G. Bognár, G. Takács, L. Pohl, L. Jani, A. Timár, P. Horváth, M. Németh, A. Poppe, P. Szabó
{"title":"将芯片级微流控冷却集成到数字电路的系统级设计中","authors":"G. Bognár, G. Takács, L. Pohl, L. Jani, A. Timár, P. Horváth, M. Németh, A. Poppe, P. Szabó","doi":"10.1109/SEMI-THERM.2017.7896912","DOIUrl":null,"url":null,"abstract":"In this paper, a novel tool and a methodology are introduced to create a thermally driven digital cell placement capability that considers the cooling capability of the integrated microscale heatsink structures. Normally, the realization of this kind of placement would require time-consuming computation fluid dynamics (CFD) simulations. With the presented solution, the CFD tool can be replaced by a thermal simulator, which incorporates analytical fluid dynamics compact models. By this approach, the determination of the precise local heat transfer coefficient(s) (thus cooling efficiency) can be realized. In addition, the temperature distribution along the microchannels can also be obtained depending on the channel geometries, the thermal properties of the fluid and the wall temperature(s). While this model is integrated into the thermal simulator, it is still needed to be connected to commercial digital IC design tools to unleash its full potential. Therefore, the interfacing tool is also developed that launches either the thermal, the electrical, or logical simulators and placement programs by using the outputs (results) of the other programs as the inputs.","PeriodicalId":442782,"journal":{"name":"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Integrating chip-level microfluidics cooling into system level design of digital circuits\",\"authors\":\"G. Bognár, G. Takács, L. Pohl, L. Jani, A. Timár, P. Horváth, M. Németh, A. Poppe, P. Szabó\",\"doi\":\"10.1109/SEMI-THERM.2017.7896912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel tool and a methodology are introduced to create a thermally driven digital cell placement capability that considers the cooling capability of the integrated microscale heatsink structures. Normally, the realization of this kind of placement would require time-consuming computation fluid dynamics (CFD) simulations. With the presented solution, the CFD tool can be replaced by a thermal simulator, which incorporates analytical fluid dynamics compact models. By this approach, the determination of the precise local heat transfer coefficient(s) (thus cooling efficiency) can be realized. In addition, the temperature distribution along the microchannels can also be obtained depending on the channel geometries, the thermal properties of the fluid and the wall temperature(s). While this model is integrated into the thermal simulator, it is still needed to be connected to commercial digital IC design tools to unleash its full potential. Therefore, the interfacing tool is also developed that launches either the thermal, the electrical, or logical simulators and placement programs by using the outputs (results) of the other programs as the inputs.\",\"PeriodicalId\":442782,\"journal\":{\"name\":\"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEMI-THERM.2017.7896912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEMI-THERM.2017.7896912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrating chip-level microfluidics cooling into system level design of digital circuits
In this paper, a novel tool and a methodology are introduced to create a thermally driven digital cell placement capability that considers the cooling capability of the integrated microscale heatsink structures. Normally, the realization of this kind of placement would require time-consuming computation fluid dynamics (CFD) simulations. With the presented solution, the CFD tool can be replaced by a thermal simulator, which incorporates analytical fluid dynamics compact models. By this approach, the determination of the precise local heat transfer coefficient(s) (thus cooling efficiency) can be realized. In addition, the temperature distribution along the microchannels can also be obtained depending on the channel geometries, the thermal properties of the fluid and the wall temperature(s). While this model is integrated into the thermal simulator, it is still needed to be connected to commercial digital IC design tools to unleash its full potential. Therefore, the interfacing tool is also developed that launches either the thermal, the electrical, or logical simulators and placement programs by using the outputs (results) of the other programs as the inputs.