{"title":"一种预测uv -纳米压印中分层和附着力的多尺度模拟方法","authors":"Yinsheng Zhong, Stephen C. T. Kwok, M. Yuen","doi":"10.1109/EUROSIME.2016.7463307","DOIUrl":null,"url":null,"abstract":"Nanoimprint lithography (NIL) provides a low cost process for nano-pattern mass production. Polymer filling and de-molding processes determine the quality of the imprinted pattern in NIL. In UV-nanoimprint lithography, low viscous polymer reduces the requirement of imprint pressure in polymer filling. The interaction between pre-patterned mold and UV-curable polymer during de-molding greatly affect the patterning result. Due to the length scale issues, molecular simulation or traditional finite element method cannot individually simulate the de-molding process. Therefore, a multi-scale approach combining both MD simulation and finite element analysis is proposed to predict the adhesion force between the mold and polymer layer in UV-nanoimprint lithography. The present study is focused on incorporating material behavior at the de-molding interface of nano-patterns. Simulation of molecular dynamics is used to calculate the interfacial energy between the polyvinyl alcohol mold and a methacrylate-based resist layer. A stress-displacement curve can be achieved from the slope of the energy-displacement relation. The result is then utilized to characterize the material properties of cohesive zone elements at the finite element model. A contact debonding model is built to simulate the de-molding process. And the model is verified by the results from peel-off experiment.","PeriodicalId":438097,"journal":{"name":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A multi-scale simulation method to predict delamination and adhesion force in UV-nanoimprint lithography\",\"authors\":\"Yinsheng Zhong, Stephen C. T. Kwok, M. Yuen\",\"doi\":\"10.1109/EUROSIME.2016.7463307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoimprint lithography (NIL) provides a low cost process for nano-pattern mass production. Polymer filling and de-molding processes determine the quality of the imprinted pattern in NIL. In UV-nanoimprint lithography, low viscous polymer reduces the requirement of imprint pressure in polymer filling. The interaction between pre-patterned mold and UV-curable polymer during de-molding greatly affect the patterning result. Due to the length scale issues, molecular simulation or traditional finite element method cannot individually simulate the de-molding process. Therefore, a multi-scale approach combining both MD simulation and finite element analysis is proposed to predict the adhesion force between the mold and polymer layer in UV-nanoimprint lithography. The present study is focused on incorporating material behavior at the de-molding interface of nano-patterns. Simulation of molecular dynamics is used to calculate the interfacial energy between the polyvinyl alcohol mold and a methacrylate-based resist layer. A stress-displacement curve can be achieved from the slope of the energy-displacement relation. The result is then utilized to characterize the material properties of cohesive zone elements at the finite element model. A contact debonding model is built to simulate the de-molding process. And the model is verified by the results from peel-off experiment.\",\"PeriodicalId\":438097,\"journal\":{\"name\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2016.7463307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2016.7463307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A multi-scale simulation method to predict delamination and adhesion force in UV-nanoimprint lithography
Nanoimprint lithography (NIL) provides a low cost process for nano-pattern mass production. Polymer filling and de-molding processes determine the quality of the imprinted pattern in NIL. In UV-nanoimprint lithography, low viscous polymer reduces the requirement of imprint pressure in polymer filling. The interaction between pre-patterned mold and UV-curable polymer during de-molding greatly affect the patterning result. Due to the length scale issues, molecular simulation or traditional finite element method cannot individually simulate the de-molding process. Therefore, a multi-scale approach combining both MD simulation and finite element analysis is proposed to predict the adhesion force between the mold and polymer layer in UV-nanoimprint lithography. The present study is focused on incorporating material behavior at the de-molding interface of nano-patterns. Simulation of molecular dynamics is used to calculate the interfacial energy between the polyvinyl alcohol mold and a methacrylate-based resist layer. A stress-displacement curve can be achieved from the slope of the energy-displacement relation. The result is then utilized to characterize the material properties of cohesive zone elements at the finite element model. A contact debonding model is built to simulate the de-molding process. And the model is verified by the results from peel-off experiment.