Qin Wang, Yiren Shen, Hailong Yao, Tsung-Yi Ho, Yici Cai
{"title":"数字微流控生物芯片中避免交叉污染的实用功能和洗涤液滴路径","authors":"Qin Wang, Yiren Shen, Hailong Yao, Tsung-Yi Ho, Yici Cai","doi":"10.1145/2593069.2593189","DOIUrl":null,"url":null,"abstract":"In digital microfluidic biochips, cross-contamination of different biomolecule droplets is a major issue. Washing operations are introduced to clean the cross-contamination sites. Existing works have oversimplified assumptions on the washing behavior, which either assume unrealistic infinite washing capacity, or ignore the execution time constraint and/or the routing conflicts between functional and washing droplets. This paper presents the first practical droplet routing flow, which considers realistic issues including the finite washing capacity constraint, and the routing conflicts between washing and functional droplets. Effectiveness of the presented method are validated by real-life biochemical applications.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Practical functional and washing droplet routing for cross-contamination avoidance in digital microfluidic biochips\",\"authors\":\"Qin Wang, Yiren Shen, Hailong Yao, Tsung-Yi Ho, Yici Cai\",\"doi\":\"10.1145/2593069.2593189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In digital microfluidic biochips, cross-contamination of different biomolecule droplets is a major issue. Washing operations are introduced to clean the cross-contamination sites. Existing works have oversimplified assumptions on the washing behavior, which either assume unrealistic infinite washing capacity, or ignore the execution time constraint and/or the routing conflicts between functional and washing droplets. This paper presents the first practical droplet routing flow, which considers realistic issues including the finite washing capacity constraint, and the routing conflicts between washing and functional droplets. Effectiveness of the presented method are validated by real-life biochemical applications.\",\"PeriodicalId\":433816,\"journal\":{\"name\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2593069.2593189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Practical functional and washing droplet routing for cross-contamination avoidance in digital microfluidic biochips
In digital microfluidic biochips, cross-contamination of different biomolecule droplets is a major issue. Washing operations are introduced to clean the cross-contamination sites. Existing works have oversimplified assumptions on the washing behavior, which either assume unrealistic infinite washing capacity, or ignore the execution time constraint and/or the routing conflicts between functional and washing droplets. This paper presents the first practical droplet routing flow, which considers realistic issues including the finite washing capacity constraint, and the routing conflicts between washing and functional droplets. Effectiveness of the presented method are validated by real-life biochemical applications.