{"title":"一款0.1 mm2 3通道面积优化ΣΔ ADC,采用0.16µm CMOS, BW为20 khz, DR为86 db","authors":"F. Sebastiano, R. V. Veldhoven","doi":"10.1109/ESSCIRC.2013.6649151","DOIUrl":null,"url":null,"abstract":"Front-ends for automotive sensors must digitize multiple channels with high resolution while minimizing their silicon area to save costs. Both channel latency and inter-channel gain mismatch must be minimized to be able to serve multiple sensor applications, ranging from ABS to power steering, with the same front-end. The proposed ΣΔ ADC simultaneously digitizes 3 channels, each with a DR of 86 dB over a 20-kHz BW using a 75-MHz clock. Channel latency is <;40 ns and inter-channel gain mismatch is <;0.2%. The ADC occupies only 0.1 mm2 in a 0.16-μm CMOS process. The small area is enabled by channel multiplexing, allowing component sharing among the channels, and by the large oversampling ratio (OSR), allowing for smaller capacitors.","PeriodicalId":183620,"journal":{"name":"2013 Proceedings of the ESSCIRC (ESSCIRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A 0.1-mm2 3-channel area-optimized ΣΔ ADC in 0.16-µm CMOS with 20-kHz BW and 86-dB DR\",\"authors\":\"F. Sebastiano, R. V. Veldhoven\",\"doi\":\"10.1109/ESSCIRC.2013.6649151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Front-ends for automotive sensors must digitize multiple channels with high resolution while minimizing their silicon area to save costs. Both channel latency and inter-channel gain mismatch must be minimized to be able to serve multiple sensor applications, ranging from ABS to power steering, with the same front-end. The proposed ΣΔ ADC simultaneously digitizes 3 channels, each with a DR of 86 dB over a 20-kHz BW using a 75-MHz clock. Channel latency is <;40 ns and inter-channel gain mismatch is <;0.2%. The ADC occupies only 0.1 mm2 in a 0.16-μm CMOS process. The small area is enabled by channel multiplexing, allowing component sharing among the channels, and by the large oversampling ratio (OSR), allowing for smaller capacitors.\",\"PeriodicalId\":183620,\"journal\":{\"name\":\"2013 Proceedings of the ESSCIRC (ESSCIRC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Proceedings of the ESSCIRC (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2013.6649151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Proceedings of the ESSCIRC (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2013.6649151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 0.1-mm2 3-channel area-optimized ΣΔ ADC in 0.16-µm CMOS with 20-kHz BW and 86-dB DR
Front-ends for automotive sensors must digitize multiple channels with high resolution while minimizing their silicon area to save costs. Both channel latency and inter-channel gain mismatch must be minimized to be able to serve multiple sensor applications, ranging from ABS to power steering, with the same front-end. The proposed ΣΔ ADC simultaneously digitizes 3 channels, each with a DR of 86 dB over a 20-kHz BW using a 75-MHz clock. Channel latency is <;40 ns and inter-channel gain mismatch is <;0.2%. The ADC occupies only 0.1 mm2 in a 0.16-μm CMOS process. The small area is enabled by channel multiplexing, allowing component sharing among the channels, and by the large oversampling ratio (OSR), allowing for smaller capacitors.