{"title":"基于局部卷积独立矢量分析的混响音频盲源分离","authors":"Fangchen Feng, Azeddine Beghdadi","doi":"10.1109/MMSP48831.2020.9287144","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new formulation for the blind source separation problem for audio signals with convolutive mixtures to improve the separation performance of Independent Vector Analysis (IVA). The proposed method benefits from both the recently investigated convolutive approximation model and the IVA approaches that take advantages of the cross-band information to avoid permutation alignment. We first exploit the link between the IVA and the Sparse Component Analysis (SCA) methods through the structured sparsity. We then propose a new framework by combining the convolutive narrowband approximation and the Windowed-Group-Lasso (WGL). The optimisation of the model is based on the alternating optimisation approach where the convolutive kernel and the source components are jointly optimised.","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reverberant Audio Blind Source Separation via Local Convolutive Independent Vector Analysis\",\"authors\":\"Fangchen Feng, Azeddine Beghdadi\",\"doi\":\"10.1109/MMSP48831.2020.9287144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new formulation for the blind source separation problem for audio signals with convolutive mixtures to improve the separation performance of Independent Vector Analysis (IVA). The proposed method benefits from both the recently investigated convolutive approximation model and the IVA approaches that take advantages of the cross-band information to avoid permutation alignment. We first exploit the link between the IVA and the Sparse Component Analysis (SCA) methods through the structured sparsity. We then propose a new framework by combining the convolutive narrowband approximation and the Windowed-Group-Lasso (WGL). The optimisation of the model is based on the alternating optimisation approach where the convolutive kernel and the source components are jointly optimised.\",\"PeriodicalId\":188283,\"journal\":{\"name\":\"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP48831.2020.9287144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reverberant Audio Blind Source Separation via Local Convolutive Independent Vector Analysis
In this paper, we propose a new formulation for the blind source separation problem for audio signals with convolutive mixtures to improve the separation performance of Independent Vector Analysis (IVA). The proposed method benefits from both the recently investigated convolutive approximation model and the IVA approaches that take advantages of the cross-band information to avoid permutation alignment. We first exploit the link between the IVA and the Sparse Component Analysis (SCA) methods through the structured sparsity. We then propose a new framework by combining the convolutive narrowband approximation and the Windowed-Group-Lasso (WGL). The optimisation of the model is based on the alternating optimisation approach where the convolutive kernel and the source components are jointly optimised.