Y. Lin, A. Appenzeller, Z. Chen, Z. Chen, H. Cheng, P. Avouris
{"title":"高性能40纳米栅极碳纳米管场效应晶体管的演示","authors":"Y. Lin, A. Appenzeller, Z. Chen, Z. Chen, H. Cheng, P. Avouris","doi":"10.1109/DRC.2005.1553081","DOIUrl":null,"url":null,"abstract":"Carbon nanotubes (CNTs) are promising candidates for post-Si nanoelectronics (Avouris et al., 2003). They are particularly attractive for high-speed applications due to their ballistic properties and high Fermi velocity (~106 m/s) Liang et al., 2001. The small-signal switching speed of a transistor is determined by the intrinsic delay time tau = 2piCG/gm, where C G is the gate capacitance and gm=dId/dV gs is the transconductance. For carbon nanotube field-effect transistors (CNFETs), the highest gm reported so far is ~ 27 muS by Javey et al. (Javey et al., 2004) using a dielectric film of 8-nm HfO2 (K=15). In their CNFET, the gate capacitance per unit length is estimated to be CG/L=1.8times10-16 F/mum, resulting in a gate delay per unit length of dL=42 ps/mum. Here we present a high-performance CNFET with a delay time per unit length of dL=22 ps/mum, the smallest value reported for CNFETs to date. In order to further minimize the parasitic capacitances and lower the intrinsic gate capacitance, we utilize a dual-gate design and fabricate a 40-nm gate CNFET possessing excellent subthreshold and output characteristics, which is the shortest gate length for a well-tempered CNFET demonstrated so far","PeriodicalId":306160,"journal":{"name":"63rd Device Research Conference Digest, 2005. DRC '05.","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Demonstration of a high performance 40-nm-gate carbon nanotube field-effect transistor\",\"authors\":\"Y. Lin, A. Appenzeller, Z. Chen, Z. Chen, H. Cheng, P. Avouris\",\"doi\":\"10.1109/DRC.2005.1553081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon nanotubes (CNTs) are promising candidates for post-Si nanoelectronics (Avouris et al., 2003). They are particularly attractive for high-speed applications due to their ballistic properties and high Fermi velocity (~106 m/s) Liang et al., 2001. The small-signal switching speed of a transistor is determined by the intrinsic delay time tau = 2piCG/gm, where C G is the gate capacitance and gm=dId/dV gs is the transconductance. For carbon nanotube field-effect transistors (CNFETs), the highest gm reported so far is ~ 27 muS by Javey et al. (Javey et al., 2004) using a dielectric film of 8-nm HfO2 (K=15). In their CNFET, the gate capacitance per unit length is estimated to be CG/L=1.8times10-16 F/mum, resulting in a gate delay per unit length of dL=42 ps/mum. Here we present a high-performance CNFET with a delay time per unit length of dL=22 ps/mum, the smallest value reported for CNFETs to date. In order to further minimize the parasitic capacitances and lower the intrinsic gate capacitance, we utilize a dual-gate design and fabricate a 40-nm gate CNFET possessing excellent subthreshold and output characteristics, which is the shortest gate length for a well-tempered CNFET demonstrated so far\",\"PeriodicalId\":306160,\"journal\":{\"name\":\"63rd Device Research Conference Digest, 2005. DRC '05.\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"63rd Device Research Conference Digest, 2005. DRC '05.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2005.1553081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"63rd Device Research Conference Digest, 2005. DRC '05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2005.1553081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Demonstration of a high performance 40-nm-gate carbon nanotube field-effect transistor
Carbon nanotubes (CNTs) are promising candidates for post-Si nanoelectronics (Avouris et al., 2003). They are particularly attractive for high-speed applications due to their ballistic properties and high Fermi velocity (~106 m/s) Liang et al., 2001. The small-signal switching speed of a transistor is determined by the intrinsic delay time tau = 2piCG/gm, where C G is the gate capacitance and gm=dId/dV gs is the transconductance. For carbon nanotube field-effect transistors (CNFETs), the highest gm reported so far is ~ 27 muS by Javey et al. (Javey et al., 2004) using a dielectric film of 8-nm HfO2 (K=15). In their CNFET, the gate capacitance per unit length is estimated to be CG/L=1.8times10-16 F/mum, resulting in a gate delay per unit length of dL=42 ps/mum. Here we present a high-performance CNFET with a delay time per unit length of dL=22 ps/mum, the smallest value reported for CNFETs to date. In order to further minimize the parasitic capacitances and lower the intrinsic gate capacitance, we utilize a dual-gate design and fabricate a 40-nm gate CNFET possessing excellent subthreshold and output characteristics, which is the shortest gate length for a well-tempered CNFET demonstrated so far