Ujjwal Guin, Xuehui Zhang, Domenic Forte, M. Tehranipoor
{"title":"低成本的片上结构,以对抗芯片和集成电路的回收","authors":"Ujjwal Guin, Xuehui Zhang, Domenic Forte, M. Tehranipoor","doi":"10.1145/2593069.2593157","DOIUrl":null,"url":null,"abstract":"The recycling of electronic components has become a major concern for the industry and government as it potentially impacts the security and reliability of a wide variety of electronic systems. The sheer number of component types (analog, digital, mixed-signal) and sizes (large or small) makes it extremely challenging to find a one-size-fits-all solution to detect and prevent recycled ICs. In this paper, we propose a suite of solutions for combating die and IC recycling (CDIR). These solutions include light-weight, on-chip structures based on ring oscillators (RO-CDIR), anti-fuses (AF-CDIR) and fuses (F-CDIR). Each structure meets the unique needs and limitations of different part types and sizes providing excellent coverage of recycled parts. HSPICE simulation results using 90nm technology demonstrate the effectiveness of our proposed negative-bias temperature instability (NBTI)-aware RO-CDIR for detecting ICs used for very short period of time. Recycling of large digital ICs can effectively be detected by using AF-CDIR. Small analog and digital recycled components can be identified by testing our F-CDIR with very low cost measurement devices, e.g., a multimeter.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"Low-cost on-chip structures for combating die and IC recycling\",\"authors\":\"Ujjwal Guin, Xuehui Zhang, Domenic Forte, M. Tehranipoor\",\"doi\":\"10.1145/2593069.2593157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recycling of electronic components has become a major concern for the industry and government as it potentially impacts the security and reliability of a wide variety of electronic systems. The sheer number of component types (analog, digital, mixed-signal) and sizes (large or small) makes it extremely challenging to find a one-size-fits-all solution to detect and prevent recycled ICs. In this paper, we propose a suite of solutions for combating die and IC recycling (CDIR). These solutions include light-weight, on-chip structures based on ring oscillators (RO-CDIR), anti-fuses (AF-CDIR) and fuses (F-CDIR). Each structure meets the unique needs and limitations of different part types and sizes providing excellent coverage of recycled parts. HSPICE simulation results using 90nm technology demonstrate the effectiveness of our proposed negative-bias temperature instability (NBTI)-aware RO-CDIR for detecting ICs used for very short period of time. Recycling of large digital ICs can effectively be detected by using AF-CDIR. Small analog and digital recycled components can be identified by testing our F-CDIR with very low cost measurement devices, e.g., a multimeter.\",\"PeriodicalId\":433816,\"journal\":{\"name\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2593069.2593157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-cost on-chip structures for combating die and IC recycling
The recycling of electronic components has become a major concern for the industry and government as it potentially impacts the security and reliability of a wide variety of electronic systems. The sheer number of component types (analog, digital, mixed-signal) and sizes (large or small) makes it extremely challenging to find a one-size-fits-all solution to detect and prevent recycled ICs. In this paper, we propose a suite of solutions for combating die and IC recycling (CDIR). These solutions include light-weight, on-chip structures based on ring oscillators (RO-CDIR), anti-fuses (AF-CDIR) and fuses (F-CDIR). Each structure meets the unique needs and limitations of different part types and sizes providing excellent coverage of recycled parts. HSPICE simulation results using 90nm technology demonstrate the effectiveness of our proposed negative-bias temperature instability (NBTI)-aware RO-CDIR for detecting ICs used for very short period of time. Recycling of large digital ICs can effectively be detected by using AF-CDIR. Small analog and digital recycled components can be identified by testing our F-CDIR with very low cost measurement devices, e.g., a multimeter.