纳米线原子开关网络中涌现的类脑复杂性:走向神经形态合成智能

Z. Kuncic, I. Marcus, P. Sanz-Leon, R. Higuchi, Y. Shingaya, M. Li, A. Stieg, J. Gimzewski, M. Aono, T. Nakayama
{"title":"纳米线原子开关网络中涌现的类脑复杂性:走向神经形态合成智能","authors":"Z. Kuncic, I. Marcus, P. Sanz-Leon, R. Higuchi, Y. Shingaya, M. Li, A. Stieg, J. Gimzewski, M. Aono, T. Nakayama","doi":"10.1109/NANO.2018.8626236","DOIUrl":null,"url":null,"abstract":"__The atomic switch is a novel nanotechnology that mimics the chemical synapse between neurons in response to electrical stimuli. When connected together in a self- organized manner, similar to a neuronal network, atomic switch networks exhibit emergent brain-like complexity properties, including nonlinear stochastic dynamics and memorization, making them a unique experimental system for emulating intelligence. Here we present a computational model developed to simulate atomic switch networks to explore the scope of emergent brain-like features. Our modelling results demonstrate the capacity for neuromorphic atomic switch networks to emulate long-term memory and generate scale-invariant fluctuations in signal transmission, in direct analogy to the brain.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Emergent brain-like complexity from nanowire atomic switch networks: Towards neuromorphic synthetic intelligence\",\"authors\":\"Z. Kuncic, I. Marcus, P. Sanz-Leon, R. Higuchi, Y. Shingaya, M. Li, A. Stieg, J. Gimzewski, M. Aono, T. Nakayama\",\"doi\":\"10.1109/NANO.2018.8626236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"__The atomic switch is a novel nanotechnology that mimics the chemical synapse between neurons in response to electrical stimuli. When connected together in a self- organized manner, similar to a neuronal network, atomic switch networks exhibit emergent brain-like complexity properties, including nonlinear stochastic dynamics and memorization, making them a unique experimental system for emulating intelligence. Here we present a computational model developed to simulate atomic switch networks to explore the scope of emergent brain-like features. Our modelling results demonstrate the capacity for neuromorphic atomic switch networks to emulate long-term memory and generate scale-invariant fluctuations in signal transmission, in direct analogy to the brain.\",\"PeriodicalId\":425521,\"journal\":{\"name\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2018.8626236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

解析:句意:原子开关是一种新型纳米技术,它模仿神经元之间的化学突触对电刺激的反应。当原子开关网络以自组织的方式连接在一起时,类似于神经网络,原子开关网络表现出类似大脑的复杂特性,包括非线性随机动力学和记忆,使它们成为模拟智能的独特实验系统。在这里,我们提出了一个用于模拟原子开关网络的计算模型,以探索紧急类脑特征的范围。我们的建模结果证明了神经形态原子开关网络模拟长期记忆的能力,并在信号传输中产生尺度不变的波动,直接类比于大脑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emergent brain-like complexity from nanowire atomic switch networks: Towards neuromorphic synthetic intelligence
__The atomic switch is a novel nanotechnology that mimics the chemical synapse between neurons in response to electrical stimuli. When connected together in a self- organized manner, similar to a neuronal network, atomic switch networks exhibit emergent brain-like complexity properties, including nonlinear stochastic dynamics and memorization, making them a unique experimental system for emulating intelligence. Here we present a computational model developed to simulate atomic switch networks to explore the scope of emergent brain-like features. Our modelling results demonstrate the capacity for neuromorphic atomic switch networks to emulate long-term memory and generate scale-invariant fluctuations in signal transmission, in direct analogy to the brain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monolithic Integration of III-V on Si Applied to Lasing Micro-Cavities: Insights from STEM and EDX Characterisation of Electroless Deposited Cobalt by Hard and Soft X-ray Photoemission Spectroscopy Multiscale simulation of nanostructured devices Modeling of a Stacked Gated Nanofluidic Channel Metamaterial-Based Label-Free Chemical Sensors for the Detection of Volatile Organic Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1