基于3.5 km网格全球天气模拟的1024元数据同化研究

H. Yashiro, K. Terasaki, Yuta Kawai, Shuhei Kudo, T. Miyoshi, Toshiyuki Imamura, K. Minami, Hikaru Inoue, T. Nishiki, Takayuki Saji, M. Satoh, H. Tomita
{"title":"基于3.5 km网格全球天气模拟的1024元数据同化研究","authors":"H. Yashiro, K. Terasaki, Yuta Kawai, Shuhei Kudo, T. Miyoshi, Toshiyuki Imamura, K. Minami, Hikaru Inoue, T. Nishiki, Takayuki Saji, M. Satoh, H. Tomita","doi":"10.1109/SC41405.2020.00005","DOIUrl":null,"url":null,"abstract":"Numerical weather prediction (NWP) supports our daily lives. Weather models require higher spatiotemporal resolutions to prepare for extreme weather disasters and reduce the uncertainty of predictions. The accuracy of the initial state of the weather simulation is also critical; thus, we need more advanced data assimilation (DA) technology. By combining resolution and ensemble size, we have achieved the world’s largest weather DA experiment using a global cloud-resolving model and an ensemble Kalman filter method. The number of grid points was $\\sim$4.4 trillion, and 1.3 PiB of data was passed from the model simulation part to the DA part. We adopted a data-centric application design and approximate computing to speed up the overall system of DA. Our DA system, named NICAM-LETKF, scales to 131,072 nodes (6,291,456 cores) of the supercomputer Fugaku with a sustained performance of 29 PFLOPS and 79 PFLOPS for the simulation and DA parts, respectively.","PeriodicalId":424429,"journal":{"name":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A 1024-Member Ensemble Data Assimilation with 3.5-Km Mesh Global Weather Simulations\",\"authors\":\"H. Yashiro, K. Terasaki, Yuta Kawai, Shuhei Kudo, T. Miyoshi, Toshiyuki Imamura, K. Minami, Hikaru Inoue, T. Nishiki, Takayuki Saji, M. Satoh, H. Tomita\",\"doi\":\"10.1109/SC41405.2020.00005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical weather prediction (NWP) supports our daily lives. Weather models require higher spatiotemporal resolutions to prepare for extreme weather disasters and reduce the uncertainty of predictions. The accuracy of the initial state of the weather simulation is also critical; thus, we need more advanced data assimilation (DA) technology. By combining resolution and ensemble size, we have achieved the world’s largest weather DA experiment using a global cloud-resolving model and an ensemble Kalman filter method. The number of grid points was $\\\\sim$4.4 trillion, and 1.3 PiB of data was passed from the model simulation part to the DA part. We adopted a data-centric application design and approximate computing to speed up the overall system of DA. Our DA system, named NICAM-LETKF, scales to 131,072 nodes (6,291,456 cores) of the supercomputer Fugaku with a sustained performance of 29 PFLOPS and 79 PFLOPS for the simulation and DA parts, respectively.\",\"PeriodicalId\":424429,\"journal\":{\"name\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC41405.2020.00005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC20: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC41405.2020.00005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

数值天气预报支持我们的日常生活。天气模式需要更高的时空分辨率,以便为极端天气灾害做好准备,并减少预测的不确定性。天气模拟初始状态的准确性也很关键;因此,我们需要更先进的数据同化(DA)技术。通过结合分辨率和集合大小,我们使用全球云分辨模式和集合卡尔曼滤波方法实现了世界上最大的天气数据分析实验。网格点数为$\sim$4.4万亿,从模型仿真部分向数据处理部分传递了1.3 PiB的数据。我们采用了以数据为中心的应用程序设计和近似计算来提高整个数据处理系统的速度。我们的数据处理系统名为NICAM-LETKF,可扩展到超级计算机Fugaku的131,072个节点(6,291,456个内核),模拟和数据处理部分的持续性能分别为29 PFLOPS和79 PFLOPS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 1024-Member Ensemble Data Assimilation with 3.5-Km Mesh Global Weather Simulations
Numerical weather prediction (NWP) supports our daily lives. Weather models require higher spatiotemporal resolutions to prepare for extreme weather disasters and reduce the uncertainty of predictions. The accuracy of the initial state of the weather simulation is also critical; thus, we need more advanced data assimilation (DA) technology. By combining resolution and ensemble size, we have achieved the world’s largest weather DA experiment using a global cloud-resolving model and an ensemble Kalman filter method. The number of grid points was $\sim$4.4 trillion, and 1.3 PiB of data was passed from the model simulation part to the DA part. We adopted a data-centric application design and approximate computing to speed up the overall system of DA. Our DA system, named NICAM-LETKF, scales to 131,072 nodes (6,291,456 cores) of the supercomputer Fugaku with a sustained performance of 29 PFLOPS and 79 PFLOPS for the simulation and DA parts, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CAB-MPI: Exploring Interprocess Work-Stealing towards Balanced MPI Communication Toward Realization of Numerical Towing-Tank Tests by Wall-Resolved Large Eddy Simulation based on 32 Billion Grid Finite-Element Computation Scalable yet Rigorous Floating-Point Error Analysis Scalable Knowledge Graph Analytics at 136 Petaflop/s BORA: A Bag Optimizer for Robotic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1