多任务学习与增强模块

Zishuo Zheng, Yadong Wei, Zixu Zhao, Xindi Wu, Zhengcheng Li, Pengju Ren
{"title":"多任务学习与增强模块","authors":"Zishuo Zheng, Yadong Wei, Zixu Zhao, Xindi Wu, Zhengcheng Li, Pengju Ren","doi":"10.1109/ICDSP.2018.8631696","DOIUrl":null,"url":null,"abstract":"In multitask learning (MTL) paradigm, modularity is an effective way to achieve component and parameter reuse as well as system extensibility. In this work, we introduce two enhanced modules named res-fire module (RF) and dimension reduction module(DR) to improve the performance of modular MTL network – PathNet. In addition, in order to further improve the transfer ability of the network, we apply learnable scale parameters to merge the outputs of the modules in the same layer and then scatter to the next layer. Experiments on MNIST, CIFAR, SVHN and MiniImageNet demonstrate that, with the similar scale as PathNet, our architecture achieves remarkable improvement in both transfer ability and expression ability. Our design used x5.23 fewer generations to achieve 99% accuracy on a source-to-target MNIST classification task compared with DeepMind’s PathNet. We also increase the accuracy of CIFARSVHN transfer task by x1.9. Also we get 70.75% accuracy on miniImageNet.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multitask Learning With Enhanced Modules\",\"authors\":\"Zishuo Zheng, Yadong Wei, Zixu Zhao, Xindi Wu, Zhengcheng Li, Pengju Ren\",\"doi\":\"10.1109/ICDSP.2018.8631696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In multitask learning (MTL) paradigm, modularity is an effective way to achieve component and parameter reuse as well as system extensibility. In this work, we introduce two enhanced modules named res-fire module (RF) and dimension reduction module(DR) to improve the performance of modular MTL network – PathNet. In addition, in order to further improve the transfer ability of the network, we apply learnable scale parameters to merge the outputs of the modules in the same layer and then scatter to the next layer. Experiments on MNIST, CIFAR, SVHN and MiniImageNet demonstrate that, with the similar scale as PathNet, our architecture achieves remarkable improvement in both transfer ability and expression ability. Our design used x5.23 fewer generations to achieve 99% accuracy on a source-to-target MNIST classification task compared with DeepMind’s PathNet. We also increase the accuracy of CIFARSVHN transfer task by x1.9. Also we get 70.75% accuracy on miniImageNet.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在多任务学习(MTL)范式中,模块化是实现组件和参数重用以及系统可扩展性的有效途径。在这项工作中,我们引入了两个增强模块,即res-fire模块(RF)和降维模块(DR),以提高模块化MTL网络PathNet的性能。此外,为了进一步提高网络的传递能力,我们采用可学习尺度参数对同一层模块的输出进行合并,然后分散到下一层。在MNIST、CIFAR、SVHN和MiniImageNet上的实验表明,在与PathNet相似的规模下,我们的架构在传输能力和表达能力上都取得了显著的提高。与DeepMind的PathNet相比,我们的设计减少了x5.23代,在源到目标的MNIST分类任务上实现了99%的准确率。我们还将CIFARSVHN传输任务的准确率提高了x1.9。我们在miniImageNet上得到70.75%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multitask Learning With Enhanced Modules
In multitask learning (MTL) paradigm, modularity is an effective way to achieve component and parameter reuse as well as system extensibility. In this work, we introduce two enhanced modules named res-fire module (RF) and dimension reduction module(DR) to improve the performance of modular MTL network – PathNet. In addition, in order to further improve the transfer ability of the network, we apply learnable scale parameters to merge the outputs of the modules in the same layer and then scatter to the next layer. Experiments on MNIST, CIFAR, SVHN and MiniImageNet demonstrate that, with the similar scale as PathNet, our architecture achieves remarkable improvement in both transfer ability and expression ability. Our design used x5.23 fewer generations to achieve 99% accuracy on a source-to-target MNIST classification task compared with DeepMind’s PathNet. We also increase the accuracy of CIFARSVHN transfer task by x1.9. Also we get 70.75% accuracy on miniImageNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A High-Throughput QC-LDPC Decoder for Near-Earth Application Face Recognition Based on Stacked Convolutional Autoencoder and Sparse Representation Internet of Remote Things: A Communication Scheme for Air-to-Ground Information Dissemination Deep Learning for Automatic IC Image Analysis A 4-D Sparse FIR Hyperfan Filter for Volumetric Refocusing of Light Fields by Hard Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1