基于人工神经网络的时变核密度参数估计改进

Xing Wang , Chris P. Tsokos , Abolfazl Saghafi
{"title":"基于人工神经网络的时变核密度参数估计改进","authors":"Xing Wang ,&nbsp;Chris P. Tsokos ,&nbsp;Abolfazl Saghafi","doi":"10.1016/j.jfds.2018.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>Time Dependent Kernel Density Estimation (TDKDE) used in modelling time-varying phenomenon requires two input parameters known as bandwidth and discount to perform. A Maximum Likelihood Estimation (MLE) procedure is commonly used to estimate these parameters in a set of data but this method has a weakness; it may not produce stable kernel estimates. In this article, a novel estimation procedure is developed using Artificial Neural Networks which eliminates this inherent issue. Moreover, evaluating the performance of the kernel estimation in terms of the uniformity of Probability Integral Transform (PIT) shows a significant improvement using the proposed method. A real-life application of TDKDE parameter estimation on NASDQ stock returns validates the flawless performance of the new technique.</p></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"4 3","pages":"Pages 172-182"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jfds.2018.04.002","citationCount":"8","resultStr":"{\"title\":\"Improved parameter estimation of Time Dependent Kernel Density by using Artificial Neural Networks\",\"authors\":\"Xing Wang ,&nbsp;Chris P. Tsokos ,&nbsp;Abolfazl Saghafi\",\"doi\":\"10.1016/j.jfds.2018.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Time Dependent Kernel Density Estimation (TDKDE) used in modelling time-varying phenomenon requires two input parameters known as bandwidth and discount to perform. A Maximum Likelihood Estimation (MLE) procedure is commonly used to estimate these parameters in a set of data but this method has a weakness; it may not produce stable kernel estimates. In this article, a novel estimation procedure is developed using Artificial Neural Networks which eliminates this inherent issue. Moreover, evaluating the performance of the kernel estimation in terms of the uniformity of Probability Integral Transform (PIT) shows a significant improvement using the proposed method. A real-life application of TDKDE parameter estimation on NASDQ stock returns validates the flawless performance of the new technique.</p></div>\",\"PeriodicalId\":36340,\"journal\":{\"name\":\"Journal of Finance and Data Science\",\"volume\":\"4 3\",\"pages\":\"Pages 172-182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jfds.2018.04.002\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Finance and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405918817300636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918817300636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

摘要

用于时变现象建模的时相关核密度估计(TDKDE)需要带宽和折扣两个输入参数来执行。极大似然估计(Maximum Likelihood Estimation, MLE)通常用于估计一组数据中的这些参数,但这种方法有一个缺点;它可能不会产生稳定的内核估计。本文利用人工神经网络开发了一种新的估计方法,消除了这一固有问题。此外,根据概率积分变换(PIT)的均匀性来评估核估计的性能,表明使用该方法有显著的改进。在纳斯达克股票收益上的TDKDE参数估计的实际应用验证了新技术的完美性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved parameter estimation of Time Dependent Kernel Density by using Artificial Neural Networks

Time Dependent Kernel Density Estimation (TDKDE) used in modelling time-varying phenomenon requires two input parameters known as bandwidth and discount to perform. A Maximum Likelihood Estimation (MLE) procedure is commonly used to estimate these parameters in a set of data but this method has a weakness; it may not produce stable kernel estimates. In this article, a novel estimation procedure is developed using Artificial Neural Networks which eliminates this inherent issue. Moreover, evaluating the performance of the kernel estimation in terms of the uniformity of Probability Integral Transform (PIT) shows a significant improvement using the proposed method. A real-life application of TDKDE parameter estimation on NASDQ stock returns validates the flawless performance of the new technique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
期刊最新文献
Unsupervised generation of tradable topic indices through textual analysis Optimal rebalancing strategies reduce market variability Symbolic Modeling for financial asset pricing Interpretable machine learning model for predicting activist investment targets Technical patterns and news sentiment in stock markets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1