{"title":"基于点阵玻尔兹曼方法的多相流建模","authors":"S. Mushtaq, R. Basit","doi":"10.1109/IBCAST.2013.6512163","DOIUrl":null,"url":null,"abstract":"To model the Multiphase flow along with phase transition process is a challenging task. In the present paper, capability of Lattice Boltzmann method (LBM) to simulate flow through complex geometries and multiphase flow has been discussed. LBM is an innovative computational fluid dynamics (CFD) approach based on kinetic models. It describes the physical system as an artificial micro-world of the particles in which the particles simply propagate, collide and interact. To check the validity of LBM, simulations have been performed for two dimensional Poisuelle flow as a test problem and compared with analytical result. Then simulations results for various geometries resembling the porous media, introduced in the flow have also been presented. For the simulation of multiphase flow involving phase transition Shan and Chen model has been used. Periodic boundary conditions have been applied in all directions. Then gravity has been introduced as the driving force. Phase transition occur spontaneously whenever the interaction strength between the particles exceeds its threshold limit. Results have been verified by Laplace law. Finally, it has been concluded that LBM is a simulation method of choice for simulating flow through porous media and multiphase flow.","PeriodicalId":276834,"journal":{"name":"Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiphase flow modeling using Lattice Boltzmann method\",\"authors\":\"S. Mushtaq, R. Basit\",\"doi\":\"10.1109/IBCAST.2013.6512163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To model the Multiphase flow along with phase transition process is a challenging task. In the present paper, capability of Lattice Boltzmann method (LBM) to simulate flow through complex geometries and multiphase flow has been discussed. LBM is an innovative computational fluid dynamics (CFD) approach based on kinetic models. It describes the physical system as an artificial micro-world of the particles in which the particles simply propagate, collide and interact. To check the validity of LBM, simulations have been performed for two dimensional Poisuelle flow as a test problem and compared with analytical result. Then simulations results for various geometries resembling the porous media, introduced in the flow have also been presented. For the simulation of multiphase flow involving phase transition Shan and Chen model has been used. Periodic boundary conditions have been applied in all directions. Then gravity has been introduced as the driving force. Phase transition occur spontaneously whenever the interaction strength between the particles exceeds its threshold limit. Results have been verified by Laplace law. Finally, it has been concluded that LBM is a simulation method of choice for simulating flow through porous media and multiphase flow.\",\"PeriodicalId\":276834,\"journal\":{\"name\":\"Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBCAST.2013.6512163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBCAST.2013.6512163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiphase flow modeling using Lattice Boltzmann method
To model the Multiphase flow along with phase transition process is a challenging task. In the present paper, capability of Lattice Boltzmann method (LBM) to simulate flow through complex geometries and multiphase flow has been discussed. LBM is an innovative computational fluid dynamics (CFD) approach based on kinetic models. It describes the physical system as an artificial micro-world of the particles in which the particles simply propagate, collide and interact. To check the validity of LBM, simulations have been performed for two dimensional Poisuelle flow as a test problem and compared with analytical result. Then simulations results for various geometries resembling the porous media, introduced in the flow have also been presented. For the simulation of multiphase flow involving phase transition Shan and Chen model has been used. Periodic boundary conditions have been applied in all directions. Then gravity has been introduced as the driving force. Phase transition occur spontaneously whenever the interaction strength between the particles exceeds its threshold limit. Results have been verified by Laplace law. Finally, it has been concluded that LBM is a simulation method of choice for simulating flow through porous media and multiphase flow.