K. Nii, Y. Tenoh, T. Yoshizawa, S. Imaoka, Y. Tsukamoto, Y. Yamagami, T. Suzuki, A. Shibayama, H. Makino, S. Iwade
{"title":"一种90 nm低功耗32k字节嵌入式SRAM,具有门漏抑制电路,用于移动应用","authors":"K. Nii, Y. Tenoh, T. Yoshizawa, S. Imaoka, Y. Tsukamoto, Y. Yamagami, T. Suzuki, A. Shibayama, H. Makino, S. Iwade","doi":"10.1109/VLSIC.2003.1221217","DOIUrl":null,"url":null,"abstract":"In sub 100 nm generation, gate tunneling leak current increases and dominates total standby leak current of LSI based on decreasing gate oxide thickness. We propose reducing gate leak current in SRAM using Local DC Level Control (LDLC) and an Automatic Gate Leakage Suppression Driver to reduce gate leak current in the peripheral circuit. We designed and fabricated a 32 KB 1-port SRAM using 90 nm CMOS technology. The 6T-SRAM-cell size is 1.25 /spl mu/m/sup 2/. Evaluation showed that the standby current of 32 KB SRAM is 1.2 /spl mu/A at 1.2 V and room temperature. It is reduced to 7.5% of conventional SRAM.","PeriodicalId":270304,"journal":{"name":"2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"A 90 nm low power 32 K-byte embedded SRAM with gate leakage suppression circuit for mobile applications\",\"authors\":\"K. Nii, Y. Tenoh, T. Yoshizawa, S. Imaoka, Y. Tsukamoto, Y. Yamagami, T. Suzuki, A. Shibayama, H. Makino, S. Iwade\",\"doi\":\"10.1109/VLSIC.2003.1221217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In sub 100 nm generation, gate tunneling leak current increases and dominates total standby leak current of LSI based on decreasing gate oxide thickness. We propose reducing gate leak current in SRAM using Local DC Level Control (LDLC) and an Automatic Gate Leakage Suppression Driver to reduce gate leak current in the peripheral circuit. We designed and fabricated a 32 KB 1-port SRAM using 90 nm CMOS technology. The 6T-SRAM-cell size is 1.25 /spl mu/m/sup 2/. Evaluation showed that the standby current of 32 KB SRAM is 1.2 /spl mu/A at 1.2 V and room temperature. It is reduced to 7.5% of conventional SRAM.\",\"PeriodicalId\":270304,\"journal\":{\"name\":\"2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2003.1221217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2003.1221217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 90 nm low power 32 K-byte embedded SRAM with gate leakage suppression circuit for mobile applications
In sub 100 nm generation, gate tunneling leak current increases and dominates total standby leak current of LSI based on decreasing gate oxide thickness. We propose reducing gate leak current in SRAM using Local DC Level Control (LDLC) and an Automatic Gate Leakage Suppression Driver to reduce gate leak current in the peripheral circuit. We designed and fabricated a 32 KB 1-port SRAM using 90 nm CMOS technology. The 6T-SRAM-cell size is 1.25 /spl mu/m/sup 2/. Evaluation showed that the standby current of 32 KB SRAM is 1.2 /spl mu/A at 1.2 V and room temperature. It is reduced to 7.5% of conventional SRAM.