石墨烯填充PDMS复合材料在手术抓握器触觉传感中的应用

J. Cabibihan, K. K. Sadasivuni, Anas Tahir, Sadiya Waseem, N. Navkar, J. Abinahed, A. Al-Ansari
{"title":"石墨烯填充PDMS复合材料在手术抓握器触觉传感中的应用","authors":"J. Cabibihan, K. K. Sadasivuni, Anas Tahir, Sadiya Waseem, N. Navkar, J. Abinahed, A. Al-Ansari","doi":"10.1109/NANO.2018.8626289","DOIUrl":null,"url":null,"abstract":"For tactile sensors to become useful technology, the required features should be flexibility, durability, and its sensitivity to physical contact. Conductive elastomer nanocomposites are widely used in fabricating a variety of electronic devices due to their excellent dispersion of the conductive nanomaterials. One such example is graphene in an elastomer matrix. In this study, we fabricated the transparent, flexible, and conductive force-responsive films from reduced graphene oxide (rGO)-filled polydimethylsiloxane (PDMS) elastomer composite. We used a simple yet unique way of mixing solution for composite preparation, which will enable an improved dispersion of filler in the matrix. Various characterization techniques were employed (i.e. SEM, FESEM, TEM, AFM XRD, UV visible spectroscopy, Raman studies, and impedance studies) to study the properties associated with the prepared thin film. The rGO was found to be well-dispersed in PDMS and it was found to behave appropriately as the sensing element during the capacitive force responsive mechanism in a metallic tip of surgical grasper. We anticipate that this kind of composites can find suitable applications for tactile sensing of surgical graspers.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene-filled PDMS Composite for Tactile Sensing of Surgical Graspers\",\"authors\":\"J. Cabibihan, K. K. Sadasivuni, Anas Tahir, Sadiya Waseem, N. Navkar, J. Abinahed, A. Al-Ansari\",\"doi\":\"10.1109/NANO.2018.8626289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For tactile sensors to become useful technology, the required features should be flexibility, durability, and its sensitivity to physical contact. Conductive elastomer nanocomposites are widely used in fabricating a variety of electronic devices due to their excellent dispersion of the conductive nanomaterials. One such example is graphene in an elastomer matrix. In this study, we fabricated the transparent, flexible, and conductive force-responsive films from reduced graphene oxide (rGO)-filled polydimethylsiloxane (PDMS) elastomer composite. We used a simple yet unique way of mixing solution for composite preparation, which will enable an improved dispersion of filler in the matrix. Various characterization techniques were employed (i.e. SEM, FESEM, TEM, AFM XRD, UV visible spectroscopy, Raman studies, and impedance studies) to study the properties associated with the prepared thin film. The rGO was found to be well-dispersed in PDMS and it was found to behave appropriately as the sensing element during the capacitive force responsive mechanism in a metallic tip of surgical grasper. We anticipate that this kind of composites can find suitable applications for tactile sensing of surgical graspers.\",\"PeriodicalId\":425521,\"journal\":{\"name\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2018.8626289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了使触觉传感器成为有用的技术,所需的特征应该是灵活性,耐用性和对物理接触的敏感性。导电弹性体纳米复合材料由于其优异的分散性能而被广泛应用于制造各种电子器件。其中一个例子是弹性体基体中的石墨烯。在这项研究中,我们用还原氧化石墨烯(rGO)填充聚二甲基硅氧烷(PDMS)弹性体复合材料制备了透明、柔性和导电的力响应薄膜。我们使用了一种简单而独特的混合溶液制备复合材料的方法,这将使填料在基体中的分散得到改善。采用各种表征技术(即SEM, FESEM, TEM, AFM, XRD, UV可见光谱,拉曼研究和阻抗研究)来研究与所制备薄膜相关的性能。研究发现,氧化石墨烯在PDMS中分散良好,并且在外科手术钳金属端部的电容力响应机制中作为传感元件表现得很好。我们期望这种复合材料能在外科手术抓握器的触觉传感中找到合适的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graphene-filled PDMS Composite for Tactile Sensing of Surgical Graspers
For tactile sensors to become useful technology, the required features should be flexibility, durability, and its sensitivity to physical contact. Conductive elastomer nanocomposites are widely used in fabricating a variety of electronic devices due to their excellent dispersion of the conductive nanomaterials. One such example is graphene in an elastomer matrix. In this study, we fabricated the transparent, flexible, and conductive force-responsive films from reduced graphene oxide (rGO)-filled polydimethylsiloxane (PDMS) elastomer composite. We used a simple yet unique way of mixing solution for composite preparation, which will enable an improved dispersion of filler in the matrix. Various characterization techniques were employed (i.e. SEM, FESEM, TEM, AFM XRD, UV visible spectroscopy, Raman studies, and impedance studies) to study the properties associated with the prepared thin film. The rGO was found to be well-dispersed in PDMS and it was found to behave appropriately as the sensing element during the capacitive force responsive mechanism in a metallic tip of surgical grasper. We anticipate that this kind of composites can find suitable applications for tactile sensing of surgical graspers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monolithic Integration of III-V on Si Applied to Lasing Micro-Cavities: Insights from STEM and EDX Characterisation of Electroless Deposited Cobalt by Hard and Soft X-ray Photoemission Spectroscopy Multiscale simulation of nanostructured devices Modeling of a Stacked Gated Nanofluidic Channel Metamaterial-Based Label-Free Chemical Sensors for the Detection of Volatile Organic Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1