形状记忆材料数据库(SMMD):发现数据异常和趋势

P. Caltagirone, O. Benafan, S. Bostic
{"title":"形状记忆材料数据库(SMMD):发现数据异常和趋势","authors":"P. Caltagirone, O. Benafan, S. Bostic","doi":"10.31399/asm.cp.smst2022p0053","DOIUrl":null,"url":null,"abstract":"\n A comprehensive shape memory materials database (SMMD) repository is being developed that provides access to a large collection of information on shape memory materials (SMMs) in a single source. The collection of point data and metadata provides insight into actuation properties, structural performance, chemical data, processing records, and similar factors pertinent to shape memory alloys, polymers, and ceramics. The data is organized in a 2D and 3D visualization platform allowing users to gain immediate access to data insights and trends with only a few button clicks. All data points have full traceability to the original source to verify findings and create a link to researchers and scientists within the community. In addition to millions of datapoints already displayed, the web-application also offers access to analysis tools, references to international standards, and resources pertinent to the SMM community.","PeriodicalId":119283,"journal":{"name":"SMST 2022: Extended Abstracts from the International Conference on Shape Memory and Superelastic Technologies","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape Memory Materials Database (SMMD): Finding Data Anomalies & Trends\",\"authors\":\"P. Caltagirone, O. Benafan, S. Bostic\",\"doi\":\"10.31399/asm.cp.smst2022p0053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A comprehensive shape memory materials database (SMMD) repository is being developed that provides access to a large collection of information on shape memory materials (SMMs) in a single source. The collection of point data and metadata provides insight into actuation properties, structural performance, chemical data, processing records, and similar factors pertinent to shape memory alloys, polymers, and ceramics. The data is organized in a 2D and 3D visualization platform allowing users to gain immediate access to data insights and trends with only a few button clicks. All data points have full traceability to the original source to verify findings and create a link to researchers and scientists within the community. In addition to millions of datapoints already displayed, the web-application also offers access to analysis tools, references to international standards, and resources pertinent to the SMM community.\",\"PeriodicalId\":119283,\"journal\":{\"name\":\"SMST 2022: Extended Abstracts from the International Conference on Shape Memory and Superelastic Technologies\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SMST 2022: Extended Abstracts from the International Conference on Shape Memory and Superelastic Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.cp.smst2022p0053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMST 2022: Extended Abstracts from the International Conference on Shape Memory and Superelastic Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.smst2022p0053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个全面的形状记忆材料数据库(SMMD)存储库正在开发中,它提供了对单一来源的形状记忆材料(SMMs)的大量信息的访问。点数据和元数据的收集提供了对驱动特性、结构性能、化学数据、处理记录以及与形状记忆合金、聚合物和陶瓷相关的类似因素的深入了解。数据在2D和3D可视化平台中组织,允许用户只需点击几下按钮即可立即访问数据见解和趋势。所有数据点都可以完全追溯到原始来源,以验证发现,并与社区内的研究人员和科学家建立联系。除了已经显示的数以百万计的数据点之外,web应用程序还提供了访问分析工具、参考国际标准和与SMM社区相关的资源的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shape Memory Materials Database (SMMD): Finding Data Anomalies & Trends
A comprehensive shape memory materials database (SMMD) repository is being developed that provides access to a large collection of information on shape memory materials (SMMs) in a single source. The collection of point data and metadata provides insight into actuation properties, structural performance, chemical data, processing records, and similar factors pertinent to shape memory alloys, polymers, and ceramics. The data is organized in a 2D and 3D visualization platform allowing users to gain immediate access to data insights and trends with only a few button clicks. All data points have full traceability to the original source to verify findings and create a link to researchers and scientists within the community. In addition to millions of datapoints already displayed, the web-application also offers access to analysis tools, references to international standards, and resources pertinent to the SMM community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fatigue Strain Verification for Cardiovascular Implantable Nitinol Devices Influence of Active Af on the Fatigue Performance of Peripheral Stents Subjected to Physiological Loading Conditions Wear and Tribology Behavior of Superelastic Ni-Ti Tubes under Fatigue Cycling in Compression A New Constitutive Modeling Approach for Shape Memory Alloys Hot Forming of Nitinol: Fundamental Investigations and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1