基于脉冲神经元神经形态VLSI网络的相关模式鲁棒分类

S. Mitra, G. Indiveri, Stefano Fusi
{"title":"基于脉冲神经元神经形态VLSI网络的相关模式鲁棒分类","authors":"S. Mitra, G. Indiveri, Stefano Fusi","doi":"10.1109/BIOCAS.2007.4463315","DOIUrl":null,"url":null,"abstract":"We demonstrate robust classification of correlated patterns of mean firing rates, using a VLSI network of spiking neurons and spike-driven plastic synapses. The synapses have bistable weights over long time-scales and the transitions from one stable state to the other are driven by the pre and postsynaptic spiking activity. Learning is supervised by a teacher signal which provides an extra current to the output neurons during the training phase. This current steers the activity of the neurons toward the desired value, and the synaptic weights are modified only if the current generated by the plastic synapses does not match the one provided by the teacher signal. If the neuron's response matches the desired output, the synaptic updates are blocked. Such a feature allows the neurons to classify spatial patterns of mean firing rates, even when they have significant correlations. If synaptic updates are stochastic, as in the case of random Poisson input spike trains, the classification performance can be further improved by combining the outcome of multiple neurons together.","PeriodicalId":273819,"journal":{"name":"2007 IEEE Biomedical Circuits and Systems Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Robust classification of correlated patterns with a neuromorphic VLSI network of spiking neurons\",\"authors\":\"S. Mitra, G. Indiveri, Stefano Fusi\",\"doi\":\"10.1109/BIOCAS.2007.4463315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate robust classification of correlated patterns of mean firing rates, using a VLSI network of spiking neurons and spike-driven plastic synapses. The synapses have bistable weights over long time-scales and the transitions from one stable state to the other are driven by the pre and postsynaptic spiking activity. Learning is supervised by a teacher signal which provides an extra current to the output neurons during the training phase. This current steers the activity of the neurons toward the desired value, and the synaptic weights are modified only if the current generated by the plastic synapses does not match the one provided by the teacher signal. If the neuron's response matches the desired output, the synaptic updates are blocked. Such a feature allows the neurons to classify spatial patterns of mean firing rates, even when they have significant correlations. If synaptic updates are stochastic, as in the case of random Poisson input spike trains, the classification performance can be further improved by combining the outcome of multiple neurons together.\",\"PeriodicalId\":273819,\"journal\":{\"name\":\"2007 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2007.4463315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2007.4463315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们使用一个由尖峰神经元和尖峰驱动的塑料突触组成的VLSI网络,展示了平均放电率相关模式的鲁棒分类。突触在长时间尺度上具有双稳定的权重,从一种稳定状态到另一种稳定状态的转变是由突触前和突触后尖峰活动驱动的。在训练阶段,教师信号向输出神经元提供额外的电流,以监督学习。这种电流将神经元的活动引导到期望的值,只有当塑料突触产生的电流与教师信号提供的电流不匹配时,突触权重才会被修改。如果神经元的反应与期望的输出相匹配,突触更新就会被阻断。这样的特征允许神经元对平均放电率的空间模式进行分类,即使它们具有显著的相关性。如果突触更新是随机的,如随机泊松输入尖峰序列的情况,则可以通过将多个神经元的结果组合在一起进一步提高分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust classification of correlated patterns with a neuromorphic VLSI network of spiking neurons
We demonstrate robust classification of correlated patterns of mean firing rates, using a VLSI network of spiking neurons and spike-driven plastic synapses. The synapses have bistable weights over long time-scales and the transitions from one stable state to the other are driven by the pre and postsynaptic spiking activity. Learning is supervised by a teacher signal which provides an extra current to the output neurons during the training phase. This current steers the activity of the neurons toward the desired value, and the synaptic weights are modified only if the current generated by the plastic synapses does not match the one provided by the teacher signal. If the neuron's response matches the desired output, the synaptic updates are blocked. Such a feature allows the neurons to classify spatial patterns of mean firing rates, even when they have significant correlations. If synaptic updates are stochastic, as in the case of random Poisson input spike trains, the classification performance can be further improved by combining the outcome of multiple neurons together.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breast Lesions Classification Using Modified Non-Recursive Discrete Biorthogonal Wavelet Transform Efficient Computation of the LF/HF Ratio in Heart Rate Variability Analysis Based on Bitstream Filtering On the Swept-threshold Sampling in UWB Medical Radar Long-term monitoring of electrochemical parameters from stimulated neural tissues A Mixed-Signal Multi-Chip Neural Recording Interface with Bandwidth Reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1