基于流体动力- CFD耦合分析的动臂过顶评估

H. Limburg, B. Sainte-Rose, Jean-Sébastien Verjut
{"title":"基于流体动力- CFD耦合分析的动臂过顶评估","authors":"H. Limburg, B. Sainte-Rose, Jean-Sébastien Verjut","doi":"10.1115/OMAE2018-77848","DOIUrl":null,"url":null,"abstract":"Plastic pollution in the marine environment is an increasing problem with severe impacts on ecosystems and economies around the globe. The Ocean Cleanup (TOC) Foundation develops a floating barrier able to intercept, concentrate and extract plastic from the marine environment.\n TOC has conducted several experiments and numerical studies to determine the capture efficiency of its system. One of the phenomena leading to its decrease is wave overtopping or under-flowing when the system cannot properly follow the waves, this issue is amplified by the use of a stiffer barrier than the original deep-water moored concept. When such events occur, plastic debris won’t be captured by the system and will escape into the open ocean. Such an event will therefore be decreasing the capture efficiency.\n To model and quantify plastic loss due to wave overtopping and under-flowing, the ideal approach would be to use a nonlinear 3D CFD method including hydro-elasticity of the barrier structure. Given the size of the problem and the number of conditions that need to be simulated to characterize the design space of the system, the use of such a method is computationally very expensive and therefore unrealistic. Therefore, the objective of this work is to propose an alternative method.\n This paper presents a method of quantifying plastic loss by coupling a hydrodynamic solver to a 2D CFD solver. A hydrodynamic model is set up to predict the dynamics of the boom. A 2D CFD model with imposed motion is used to analyze the local effects of wave overtopping. From there, wave overtopping events along the barrier system are analyzed and quantified using the results found in the 2D CFD study.","PeriodicalId":345141,"journal":{"name":"Volume 2: CFD and FSI","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Boom Overtopping Assessment Based on a Coupled Hydrodynamic - CFD Analysis\",\"authors\":\"H. Limburg, B. Sainte-Rose, Jean-Sébastien Verjut\",\"doi\":\"10.1115/OMAE2018-77848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plastic pollution in the marine environment is an increasing problem with severe impacts on ecosystems and economies around the globe. The Ocean Cleanup (TOC) Foundation develops a floating barrier able to intercept, concentrate and extract plastic from the marine environment.\\n TOC has conducted several experiments and numerical studies to determine the capture efficiency of its system. One of the phenomena leading to its decrease is wave overtopping or under-flowing when the system cannot properly follow the waves, this issue is amplified by the use of a stiffer barrier than the original deep-water moored concept. When such events occur, plastic debris won’t be captured by the system and will escape into the open ocean. Such an event will therefore be decreasing the capture efficiency.\\n To model and quantify plastic loss due to wave overtopping and under-flowing, the ideal approach would be to use a nonlinear 3D CFD method including hydro-elasticity of the barrier structure. Given the size of the problem and the number of conditions that need to be simulated to characterize the design space of the system, the use of such a method is computationally very expensive and therefore unrealistic. Therefore, the objective of this work is to propose an alternative method.\\n This paper presents a method of quantifying plastic loss by coupling a hydrodynamic solver to a 2D CFD solver. A hydrodynamic model is set up to predict the dynamics of the boom. A 2D CFD model with imposed motion is used to analyze the local effects of wave overtopping. From there, wave overtopping events along the barrier system are analyzed and quantified using the results found in the 2D CFD study.\",\"PeriodicalId\":345141,\"journal\":{\"name\":\"Volume 2: CFD and FSI\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: CFD and FSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/OMAE2018-77848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: CFD and FSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-77848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

海洋环境中的塑料污染是一个日益严重的问题,对全球生态系统和经济产生了严重影响。海洋清理(TOC)基金会开发了一种能够从海洋环境中拦截、浓缩和提取塑料的浮动屏障。为了确定其系统的捕获效率,TOC进行了多次实验和数值研究。当系统不能很好地跟随波浪时,导致其减小的现象之一是波浪过顶或下流,这一问题由于使用比原始深水系泊概念更硬的屏障而被放大。当这种情况发生时,塑料碎片不会被系统捕获,而是会逃逸到公海中。因此,这样的事件将降低捕获效率。为了模拟和量化波浪过顶和下流造成的塑性损失,理想的方法是使用非线性3D CFD方法,包括屏障结构的水弹性。考虑到问题的大小和需要模拟以表征系统设计空间的条件的数量,使用这种方法在计算上非常昂贵,因此是不现实的。因此,本工作的目的是提出一种替代方法。本文提出了一种将流体动力学求解器与二维CFD求解器相结合的定量计算塑性损失的方法。建立了水动力模型来预测臂架的动力学特性。采用二维强加运动CFD模型分析了波浪过顶的局部效应。在此基础上,利用二维CFD研究的结果,分析和量化沿障壁系统的波浪过顶事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boom Overtopping Assessment Based on a Coupled Hydrodynamic - CFD Analysis
Plastic pollution in the marine environment is an increasing problem with severe impacts on ecosystems and economies around the globe. The Ocean Cleanup (TOC) Foundation develops a floating barrier able to intercept, concentrate and extract plastic from the marine environment. TOC has conducted several experiments and numerical studies to determine the capture efficiency of its system. One of the phenomena leading to its decrease is wave overtopping or under-flowing when the system cannot properly follow the waves, this issue is amplified by the use of a stiffer barrier than the original deep-water moored concept. When such events occur, plastic debris won’t be captured by the system and will escape into the open ocean. Such an event will therefore be decreasing the capture efficiency. To model and quantify plastic loss due to wave overtopping and under-flowing, the ideal approach would be to use a nonlinear 3D CFD method including hydro-elasticity of the barrier structure. Given the size of the problem and the number of conditions that need to be simulated to characterize the design space of the system, the use of such a method is computationally very expensive and therefore unrealistic. Therefore, the objective of this work is to propose an alternative method. This paper presents a method of quantifying plastic loss by coupling a hydrodynamic solver to a 2D CFD solver. A hydrodynamic model is set up to predict the dynamics of the boom. A 2D CFD model with imposed motion is used to analyze the local effects of wave overtopping. From there, wave overtopping events along the barrier system are analyzed and quantified using the results found in the 2D CFD study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development and Validation of CFD Analysis Procedure for Predicting Wind Load on Commercial Ships Multi-Phase Simulation of Droplet Trajectories of Wave-Impact Sea Spray Over a Vessel Numerical Study of Breaking Waves and Associated Wave Forces on a Jacket Substructure for Offshore Wind Turbines Numerical Simulation of Trim Optimization on Resistance Performance Based on CFD Method Fundamental CFD Study on the Hydrodynamic Performance of the DARPA SUBOFF Submarine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1