基于局部胶囊池的分层图表示学习

Zidong Su, Zehui Hu, Yangding Li
{"title":"基于局部胶囊池的分层图表示学习","authors":"Zidong Su, Zehui Hu, Yangding Li","doi":"10.1145/3469877.3495645","DOIUrl":null,"url":null,"abstract":"Hierarchical graph pooling has shown great potential for capturing high-quality graph representations through the node cluster selection mechanism. However, the current node cluster selection methods have inadequate clustering issues, and their scoring methods rely too much on the node representation, resulting in excessive graph structure information loss during pooling. In this paper, a local capsule pooling network (LCPN) is proposed to alleviate the above issues. Specifically, (i) a local capsule pooling (LCP) is proposed to alleviate the issue of insufficient clustering; (ii) a task-aware readout (TAR) mechanism is proposed to obtain a more expressive graph representation; (iii) a pooling information loss (PIL) term is proposed to further alleviate the information loss caused by pooling during training. Experimental results on the graph classification task, the graph reconstruction task, and the pooled graph adjacency visualization task show the superior performance of the proposed LCPN and demonstrate its effectiveness and efficiency.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hierarchical Graph Representation Learning with Local Capsule Pooling\",\"authors\":\"Zidong Su, Zehui Hu, Yangding Li\",\"doi\":\"10.1145/3469877.3495645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hierarchical graph pooling has shown great potential for capturing high-quality graph representations through the node cluster selection mechanism. However, the current node cluster selection methods have inadequate clustering issues, and their scoring methods rely too much on the node representation, resulting in excessive graph structure information loss during pooling. In this paper, a local capsule pooling network (LCPN) is proposed to alleviate the above issues. Specifically, (i) a local capsule pooling (LCP) is proposed to alleviate the issue of insufficient clustering; (ii) a task-aware readout (TAR) mechanism is proposed to obtain a more expressive graph representation; (iii) a pooling information loss (PIL) term is proposed to further alleviate the information loss caused by pooling during training. Experimental results on the graph classification task, the graph reconstruction task, and the pooled graph adjacency visualization task show the superior performance of the proposed LCPN and demonstrate its effectiveness and efficiency.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3495645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3495645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

通过节点集群选择机制,分层图池显示出捕获高质量图表示的巨大潜力。然而,目前的节点聚类选择方法存在聚类不足的问题,并且其评分方法过于依赖节点表示,导致池化过程中过多的图结构信息丢失。本文提出了一种局部胶囊池网络(LCPN)来解决上述问题。具体而言,(i)提出了一种局部胶囊池(LCP)来缓解聚类不足的问题;(ii)提出任务感知读出(TAR)机制,以获得更具表现力的图形表示;(iii)提出池化信息损失(PIL)术语,进一步缓解训练过程中池化造成的信息损失。在图分类任务、图重构任务和池图邻接可视化任务上的实验结果表明,所提LCPN具有优越的性能,证明了其有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical Graph Representation Learning with Local Capsule Pooling
Hierarchical graph pooling has shown great potential for capturing high-quality graph representations through the node cluster selection mechanism. However, the current node cluster selection methods have inadequate clustering issues, and their scoring methods rely too much on the node representation, resulting in excessive graph structure information loss during pooling. In this paper, a local capsule pooling network (LCPN) is proposed to alleviate the above issues. Specifically, (i) a local capsule pooling (LCP) is proposed to alleviate the issue of insufficient clustering; (ii) a task-aware readout (TAR) mechanism is proposed to obtain a more expressive graph representation; (iii) a pooling information loss (PIL) term is proposed to further alleviate the information loss caused by pooling during training. Experimental results on the graph classification task, the graph reconstruction task, and the pooled graph adjacency visualization task show the superior performance of the proposed LCPN and demonstrate its effectiveness and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1