柔性月壤采样器振动自适应控制

W. Lu, Hong Zeng, Aiguo Song, Wei-min Ding, Y. Ling, Baoguo Xu
{"title":"柔性月壤采样器振动自适应控制","authors":"W. Lu, Hong Zeng, Aiguo Song, Wei-min Ding, Y. Ling, Baoguo Xu","doi":"10.11591/TELKOMNIKA.V10I8.1628","DOIUrl":null,"url":null,"abstract":"With respect to the problem of big volume, large weight and high power consumption of lunar sampler nowadays, the paper firstly described a novel flexible mini lunar regolith sampler. Then the vibration model of it is established while drilling. The drilling efficiency can be improved more effectively by controlling the lunar regolith sampler always in the resonance state. But the dynamical modeling of the sampler-regolith system is difficult to obtain and time varies when the sampler is in different depth in the lunar regolith. So we present a method of the vibration frequency fuzzy adaptive control based on the dynamic prediction by using the Levenberg-Marquardt Back Propagation (LMBP) neural networks. The LMBP with a FIR filter in series is used to predict the resonant frequency dynamically. And the fuzzy adaptive control is used to calculate the sweeping frequency bandwidth with the input of the amplitude and variation. The simul","PeriodicalId":414053,"journal":{"name":"TELKOMNIKA : Indonesian Journal of Electrical Engineering","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vibration Adaptive Control of the Flexible Lunar Regolith Sampler\",\"authors\":\"W. Lu, Hong Zeng, Aiguo Song, Wei-min Ding, Y. Ling, Baoguo Xu\",\"doi\":\"10.11591/TELKOMNIKA.V10I8.1628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With respect to the problem of big volume, large weight and high power consumption of lunar sampler nowadays, the paper firstly described a novel flexible mini lunar regolith sampler. Then the vibration model of it is established while drilling. The drilling efficiency can be improved more effectively by controlling the lunar regolith sampler always in the resonance state. But the dynamical modeling of the sampler-regolith system is difficult to obtain and time varies when the sampler is in different depth in the lunar regolith. So we present a method of the vibration frequency fuzzy adaptive control based on the dynamic prediction by using the Levenberg-Marquardt Back Propagation (LMBP) neural networks. The LMBP with a FIR filter in series is used to predict the resonant frequency dynamically. And the fuzzy adaptive control is used to calculate the sweeping frequency bandwidth with the input of the amplitude and variation. The simul\",\"PeriodicalId\":414053,\"journal\":{\"name\":\"TELKOMNIKA : Indonesian Journal of Electrical Engineering\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TELKOMNIKA : Indonesian Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/TELKOMNIKA.V10I8.1628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TELKOMNIKA : Indonesian Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/TELKOMNIKA.V10I8.1628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对目前月球采样器体积大、重量大、功耗高的问题,本文首先介绍了一种新型的柔性微型月球风化层采样器。然后建立了它在钻孔过程中的振动模型。通过控制月壤取样器始终处于共振状态,可以更有效地提高钻孔效率。但采样器-月壤系统的动力学建模很难获得,且采样器在月壤中不同深度时时间会发生变化。为此,提出了一种基于动态预测的基于Levenberg-Marquardt反向传播(LMBP)神经网络的振动频率模糊自适应控制方法。采用带FIR滤波器的LMBP系统动态预测谐振频率。采用模糊自适应控制,以幅值和变化量为输入,计算扫频带宽。的同时
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vibration Adaptive Control of the Flexible Lunar Regolith Sampler
With respect to the problem of big volume, large weight and high power consumption of lunar sampler nowadays, the paper firstly described a novel flexible mini lunar regolith sampler. Then the vibration model of it is established while drilling. The drilling efficiency can be improved more effectively by controlling the lunar regolith sampler always in the resonance state. But the dynamical modeling of the sampler-regolith system is difficult to obtain and time varies when the sampler is in different depth in the lunar regolith. So we present a method of the vibration frequency fuzzy adaptive control based on the dynamic prediction by using the Levenberg-Marquardt Back Propagation (LMBP) neural networks. The LMBP with a FIR filter in series is used to predict the resonant frequency dynamically. And the fuzzy adaptive control is used to calculate the sweeping frequency bandwidth with the input of the amplitude and variation. The simul
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Accurate Spelling Correction Using Trie and Damerau-levenshtein Distance Bigram Role of Socio- Cognitive View and Relational View inUnderstanding the Continued Use of Internet Banking Fast and Accurate Spelling Correction Using Trie and Bigram WIRELESS DATA COMMUNICATION TECHNIQUES TO COORDINATE SINGLE-PHASE ROOFTOP PVs IN UNBALANCED THREE-PHASE LOW VOLTAGE FEEDER Stream a Framework for Detecting Movement Indoors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1