利用MODTRAN辐射输运进行大气校正:FLAASH算法

A. Berk, S. Adler-Golden, A. Ratkowski, G. Felde, G. Anderson, M. Hoke, T. Cooley, J. Chetwynd, J. Gardner, M. Matthew, L. Bernstein, P. Acharya, D. Miller, P. Lewis
{"title":"利用MODTRAN辐射输运进行大气校正:FLAASH算法","authors":"A. Berk, S. Adler-Golden, A. Ratkowski, G. Felde, G. Anderson, M. Hoke, T. Cooley, J. Chetwynd, J. Gardner, M. Matthew, L. Bernstein, P. Acharya, D. Miller, P. Lewis","doi":"10.1109/ICIF.2002.1020888","DOIUrl":null,"url":null,"abstract":"Terrain categorization and target detection algorithms applied to hyperspectral imagery (HSI) typically operate on the measured reflectance (of sun and sky illumination) by an object or scene. Since the reflectance is a non-dimensional ratio, the reflectance by an object is nominally not affected by variations in lighting conditions. Atmospheric correction (referred to as atmospheric compensation, characterization, etc.) algorithms (ACAs) are used in applications of remotely sensed HSI data to correct for the effects of atmospheric propagation on measurements acquired by air and space-borne systems. The fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) algorithm is an ACA created for HSI applications in the visible through shortwave infrared (Vis-SWIR) spectral regime. FLAASH derives its 'physics-based' mathematics from MODTRAN4.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Exploiting MODTRAN radiation transport for atmospheric correction: The FLAASH algorithm\",\"authors\":\"A. Berk, S. Adler-Golden, A. Ratkowski, G. Felde, G. Anderson, M. Hoke, T. Cooley, J. Chetwynd, J. Gardner, M. Matthew, L. Bernstein, P. Acharya, D. Miller, P. Lewis\",\"doi\":\"10.1109/ICIF.2002.1020888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terrain categorization and target detection algorithms applied to hyperspectral imagery (HSI) typically operate on the measured reflectance (of sun and sky illumination) by an object or scene. Since the reflectance is a non-dimensional ratio, the reflectance by an object is nominally not affected by variations in lighting conditions. Atmospheric correction (referred to as atmospheric compensation, characterization, etc.) algorithms (ACAs) are used in applications of remotely sensed HSI data to correct for the effects of atmospheric propagation on measurements acquired by air and space-borne systems. The fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) algorithm is an ACA created for HSI applications in the visible through shortwave infrared (Vis-SWIR) spectral regime. FLAASH derives its 'physics-based' mathematics from MODTRAN4.\",\"PeriodicalId\":399150,\"journal\":{\"name\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2002.1020888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1020888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

应用于高光谱成像(HSI)的地形分类和目标检测算法通常基于物体或场景的测量反射率(太阳和天空照明)。由于反射率是非量纲比率,因此物体的反射率在名义上不受光照条件变化的影响。大气校正(称为大气补偿、表征等)算法(ACAs)用于遥感HSI数据的应用,以校正大气传播对空中和空间系统获得的测量结果的影响。光谱超立方体的快速视距大气分析(FLAASH)算法是为HSI在可见光至短波红外(Vis-SWIR)光谱中的应用而创建的一种ACA。flash从MODTRAN4中获得了“基于物理的”数学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploiting MODTRAN radiation transport for atmospheric correction: The FLAASH algorithm
Terrain categorization and target detection algorithms applied to hyperspectral imagery (HSI) typically operate on the measured reflectance (of sun and sky illumination) by an object or scene. Since the reflectance is a non-dimensional ratio, the reflectance by an object is nominally not affected by variations in lighting conditions. Atmospheric correction (referred to as atmospheric compensation, characterization, etc.) algorithms (ACAs) are used in applications of remotely sensed HSI data to correct for the effects of atmospheric propagation on measurements acquired by air and space-borne systems. The fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) algorithm is an ACA created for HSI applications in the visible through shortwave infrared (Vis-SWIR) spectral regime. FLAASH derives its 'physics-based' mathematics from MODTRAN4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approximating fuzzy measures by hierarchically decomposable ones Tracking and fusion for wireless sensor networks A dynamic communication model for loosely coupled hybrid tracking systems On platform-based sensor management An improved Bayes fusion algorithm with the Parzen window method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1