基于空间轮廓信息的无线传感器网络覆盖改进

K. Pandey, Abhishek K. Gupta
{"title":"基于空间轮廓信息的无线传感器网络覆盖改进","authors":"K. Pandey, Abhishek K. Gupta","doi":"10.1109/SPCOM50965.2020.9179613","DOIUrl":null,"url":null,"abstract":"This paper considers a wireless sensor network deployed to sense an environment variable with a known spatial statistical profile. We propose to use the additional information of the spatial profile to improve the sensing range of sensors while allowing some tolerance in their sensing accuracy. We show that the use of this information improves the sensing performance of the total WSN. For this, we first derive analytical expressions for various performance metrics to measure the improvement in the sensing performance of WSN. We then discuss the sensing gains quantitatively using numerical results.","PeriodicalId":208527,"journal":{"name":"2020 International Conference on Signal Processing and Communications (SPCOM)","volume":"77 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coverage Improvement of Wireless Sensor Networks via Spatial Profile Information\",\"authors\":\"K. Pandey, Abhishek K. Gupta\",\"doi\":\"10.1109/SPCOM50965.2020.9179613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a wireless sensor network deployed to sense an environment variable with a known spatial statistical profile. We propose to use the additional information of the spatial profile to improve the sensing range of sensors while allowing some tolerance in their sensing accuracy. We show that the use of this information improves the sensing performance of the total WSN. For this, we first derive analytical expressions for various performance metrics to measure the improvement in the sensing performance of WSN. We then discuss the sensing gains quantitatively using numerical results.\",\"PeriodicalId\":208527,\"journal\":{\"name\":\"2020 International Conference on Signal Processing and Communications (SPCOM)\",\"volume\":\"77 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Signal Processing and Communications (SPCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPCOM50965.2020.9179613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM50965.2020.9179613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文考虑了一种无线传感器网络,用于感知具有已知空间统计轮廓的环境变量。我们建议利用空间轮廓的附加信息来提高传感器的传感范围,同时允许传感器的传感精度有一定的公差。我们证明了这些信息的使用提高了整个WSN的感知性能。为此,我们首先推导了各种性能指标的解析表达式,以衡量WSN感知性能的提高。然后,我们用数值结果定量地讨论了传感增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coverage Improvement of Wireless Sensor Networks via Spatial Profile Information
This paper considers a wireless sensor network deployed to sense an environment variable with a known spatial statistical profile. We propose to use the additional information of the spatial profile to improve the sensing range of sensors while allowing some tolerance in their sensing accuracy. We show that the use of this information improves the sensing performance of the total WSN. For this, we first derive analytical expressions for various performance metrics to measure the improvement in the sensing performance of WSN. We then discuss the sensing gains quantitatively using numerical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wavelet based Fine-to-Coarse Retinal Blood Vessel Extraction using U-net Model Classification of Social Signals Using Deep LSTM-based Recurrent Neural Networks Classifying Cultural Music using Melodic Features Clustering tendency assessment for datasets having inter-cluster density variations Component-specific temporal decomposition: application to enhanced speech coding and co-articulation analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1