图像融合技术的探讨与分析

T. Hui, W. Binbin
{"title":"图像融合技术的探讨与分析","authors":"T. Hui, W. Binbin","doi":"10.1109/ICMV.2009.71","DOIUrl":null,"url":null,"abstract":"This paper describes image fusion in detail, and firstly intrudes the three basic levels which are pixel level, feature level and decision level fusion, and then compares with their properties and all other aspects. Then it describes the evaluation criteria of image fusion results from subjective evaluation and objective evaluation two aspects. According to the quantitative evaluation of the image fusion results and quality, this text uses and defines multiple evaluation parameters such as fusion image entropy, mutual information MI, the average gradient, standard deviation, cross-entropy, unite entropy, bias, relative bias, mean square error, root mean square error and peak SNR, and establishes the corresponding evaluation criteria.","PeriodicalId":315778,"journal":{"name":"2009 Second International Conference on Machine Vision","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Discussion and Analyze on Image Fusion Technology\",\"authors\":\"T. Hui, W. Binbin\",\"doi\":\"10.1109/ICMV.2009.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes image fusion in detail, and firstly intrudes the three basic levels which are pixel level, feature level and decision level fusion, and then compares with their properties and all other aspects. Then it describes the evaluation criteria of image fusion results from subjective evaluation and objective evaluation two aspects. According to the quantitative evaluation of the image fusion results and quality, this text uses and defines multiple evaluation parameters such as fusion image entropy, mutual information MI, the average gradient, standard deviation, cross-entropy, unite entropy, bias, relative bias, mean square error, root mean square error and peak SNR, and establishes the corresponding evaluation criteria.\",\"PeriodicalId\":315778,\"journal\":{\"name\":\"2009 Second International Conference on Machine Vision\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Conference on Machine Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMV.2009.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Conference on Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMV.2009.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文对图像融合进行了详细的描述,首先介绍了像素级融合、特征级融合和决策级融合这三个基本层次,然后比较了它们的特性和其他方面。然后从主观评价和客观评价两个方面描述了图像融合效果的评价标准。根据对图像融合结果和质量的定量评价,本文使用并定义了融合图像熵、互信息MI、平均梯度、标准差、交叉熵、统一熵、偏差、相对偏差、均方误差、均方根误差、峰值信噪比等多个评价参数,并建立了相应的评价标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discussion and Analyze on Image Fusion Technology
This paper describes image fusion in detail, and firstly intrudes the three basic levels which are pixel level, feature level and decision level fusion, and then compares with their properties and all other aspects. Then it describes the evaluation criteria of image fusion results from subjective evaluation and objective evaluation two aspects. According to the quantitative evaluation of the image fusion results and quality, this text uses and defines multiple evaluation parameters such as fusion image entropy, mutual information MI, the average gradient, standard deviation, cross-entropy, unite entropy, bias, relative bias, mean square error, root mean square error and peak SNR, and establishes the corresponding evaluation criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Particle Swarm Steepest Gradient Algorithm for Elastic Brain Image Registration Early Software Fault Prediction Using Real Time Defect Data Effective Watermarking of Digital Audio and Image Using Matlab Technique A Robust Neural System for Objectionable Image Recognition A Hybrid Scheme for Online Detection and Classification of Textural Fabric Defects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1