Byeonghun Yun, Dae-Woong Park, Chan-Gyu Choi, Ho-Jin Song, Sang-Gug Lee
{"title":"280.2/309.2 GHz, 18.2/9.3 dB增益,1.48/1.4 dB / mw增益,65nm CMOS三级放大器采用$\\text{双嵌入-}G_{max}\\text{-core}$","authors":"Byeonghun Yun, Dae-Woong Park, Chan-Gyu Choi, Ho-Jin Song, Sang-Gug Lee","doi":"10.1109/RFIC54546.2022.9863110","DOIUrl":null,"url":null,"abstract":"This paper reports a sub-THz high-gain amplifier design technique which is more flexible and suitable for performance optimization based on a $\\text{double}\\text{-}\\text{embedded}\\text{-}G_{max}\\text{-}\\text{core}$. The $\\text{double}\\text{-} \\text{embedded} \\text{-}G_{max}\\text{-}\\text{cort}$ is implemented by adopting an additional linear, lossless, and reciprocal (LLR) network that satisfies the $G_{max}\\text{-}\\text{condition} (Y_{21}/Y_{12}=\\text{-}G_{max})$ on to an $N\\text{-}\\text{stage}\\ \\ \\text{pseudo}\\text{-}G_{max}\\text{-}\\text{cores}$ where each stage satisfies the stability factor $k_{i}\\!\\!=\\!\\!1$ and phase delay of $2\\mathrm{m}\\pi/N$. Implemented in a 65nm CMOS, the three-stage 280.2 and 309.2 GHz amplifiers achieve power gains of 18.2 and 9.3 dB and gain-per-mW of 1.48 and 1.4 dB/mW, respectively.","PeriodicalId":415294,"journal":{"name":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"280.2/309.2 GHz, 18.2/9.3 dB Gain, 1.48/1.4 dB Gain-per-mW, 3-Stage Amplifiers in 65nm CMOS Adopting $\\\\text{Double-embedded-}G_{max}\\\\text{-core}$\",\"authors\":\"Byeonghun Yun, Dae-Woong Park, Chan-Gyu Choi, Ho-Jin Song, Sang-Gug Lee\",\"doi\":\"10.1109/RFIC54546.2022.9863110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a sub-THz high-gain amplifier design technique which is more flexible and suitable for performance optimization based on a $\\\\text{double}\\\\text{-}\\\\text{embedded}\\\\text{-}G_{max}\\\\text{-}\\\\text{core}$. The $\\\\text{double}\\\\text{-} \\\\text{embedded} \\\\text{-}G_{max}\\\\text{-}\\\\text{cort}$ is implemented by adopting an additional linear, lossless, and reciprocal (LLR) network that satisfies the $G_{max}\\\\text{-}\\\\text{condition} (Y_{21}/Y_{12}=\\\\text{-}G_{max})$ on to an $N\\\\text{-}\\\\text{stage}\\\\ \\\\ \\\\text{pseudo}\\\\text{-}G_{max}\\\\text{-}\\\\text{cores}$ where each stage satisfies the stability factor $k_{i}\\\\!\\\\!=\\\\!\\\\!1$ and phase delay of $2\\\\mathrm{m}\\\\pi/N$. Implemented in a 65nm CMOS, the three-stage 280.2 and 309.2 GHz amplifiers achieve power gains of 18.2 and 9.3 dB and gain-per-mW of 1.48 and 1.4 dB/mW, respectively.\",\"PeriodicalId\":415294,\"journal\":{\"name\":\"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC54546.2022.9863110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC54546.2022.9863110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
280.2/309.2 GHz, 18.2/9.3 dB Gain, 1.48/1.4 dB Gain-per-mW, 3-Stage Amplifiers in 65nm CMOS Adopting $\text{Double-embedded-}G_{max}\text{-core}$
This paper reports a sub-THz high-gain amplifier design technique which is more flexible and suitable for performance optimization based on a $\text{double}\text{-}\text{embedded}\text{-}G_{max}\text{-}\text{core}$. The $\text{double}\text{-} \text{embedded} \text{-}G_{max}\text{-}\text{cort}$ is implemented by adopting an additional linear, lossless, and reciprocal (LLR) network that satisfies the $G_{max}\text{-}\text{condition} (Y_{21}/Y_{12}=\text{-}G_{max})$ on to an $N\text{-}\text{stage}\ \ \text{pseudo}\text{-}G_{max}\text{-}\text{cores}$ where each stage satisfies the stability factor $k_{i}\!\!=\!\!1$ and phase delay of $2\mathrm{m}\pi/N$. Implemented in a 65nm CMOS, the three-stage 280.2 and 309.2 GHz amplifiers achieve power gains of 18.2 and 9.3 dB and gain-per-mW of 1.48 and 1.4 dB/mW, respectively.