D-RaNGe:使用商品DRAM设备生成具有低延迟和高吞吐量的真随机数

Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, O. Mutlu
{"title":"D-RaNGe:使用商品DRAM设备生成具有低延迟和高吞吐量的真随机数","authors":"Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, O. Mutlu","doi":"10.1109/HPCA.2019.00011","DOIUrl":null,"url":null,"abstract":"We propose a new DRAM-based true random number generator (TRNG) that leverages DRAM cells as an entropy source. The key idea is to intentionally violate the DRAM access timing parameters and use the resulting errors as the source of randomness. Our technique specifically decreases the DRAM row activation latency (timing parameter tRCD) below manufacturer-recommended specifications, to induce read errors, or activation failures, that exhibit true random behavior. We then aggregate the resulting data from multiple cells to obtain a TRNG capable of providing a high throughput of random numbers at low latency. \nTo demonstrate that our TRNG design is viable using commodity DRAM chips, we rigorously characterize the behavior of activation failures in 282 state-of-the-art LPDDR4 devices from three major DRAM manufacturers. We verify our observations using four additional DDR3 DRAM devices from the same manufacturers. Our results show that many cells in each device produce random data that remains robust over both time and temperature variation. We use our observations to develop D-RanGe, a methodology for extracting true random numbers from commodity DRAM devices with high throughput and low latency by deliberately violating the read access timing parameters. We evaluate the quality of our TRNG using the commonly-used NIST statistical test suite for randomness and find that D-RaNGe: 1) successfully passes each test, and 2) generates true random numbers with over two orders of magnitude higher throughput than the previous highest-throughput DRAM-based TRNG.","PeriodicalId":102050,"journal":{"name":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":"{\"title\":\"D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput\",\"authors\":\"Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, O. Mutlu\",\"doi\":\"10.1109/HPCA.2019.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new DRAM-based true random number generator (TRNG) that leverages DRAM cells as an entropy source. The key idea is to intentionally violate the DRAM access timing parameters and use the resulting errors as the source of randomness. Our technique specifically decreases the DRAM row activation latency (timing parameter tRCD) below manufacturer-recommended specifications, to induce read errors, or activation failures, that exhibit true random behavior. We then aggregate the resulting data from multiple cells to obtain a TRNG capable of providing a high throughput of random numbers at low latency. \\nTo demonstrate that our TRNG design is viable using commodity DRAM chips, we rigorously characterize the behavior of activation failures in 282 state-of-the-art LPDDR4 devices from three major DRAM manufacturers. We verify our observations using four additional DDR3 DRAM devices from the same manufacturers. Our results show that many cells in each device produce random data that remains robust over both time and temperature variation. We use our observations to develop D-RanGe, a methodology for extracting true random numbers from commodity DRAM devices with high throughput and low latency by deliberately violating the read access timing parameters. We evaluate the quality of our TRNG using the commonly-used NIST statistical test suite for randomness and find that D-RaNGe: 1) successfully passes each test, and 2) generates true random numbers with over two orders of magnitude higher throughput than the previous highest-throughput DRAM-based TRNG.\",\"PeriodicalId\":102050,\"journal\":{\"name\":\"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"84\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2019.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2019.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84

摘要

我们提出了一种新的基于DRAM的真随机数生成器(TRNG),它利用DRAM单元作为熵源。关键思想是故意违反DRAM访问时序参数,并使用由此产生的错误作为随机性的来源。我们的技术将DRAM行激活延迟(时序参数tRCD)降低到低于制造商推荐的规格,从而导致读取错误或激活失败,表现出真正的随机行为。然后,我们聚合来自多个单元的结果数据,以获得能够在低延迟下提供高吞吐量随机数的TRNG。为了证明我们的TRNG设计在使用商品DRAM芯片时是可行的,我们严格地描述了来自三家主要DRAM制造商的282台最先进的LPDDR4设备的激活故障行为。我们使用来自同一制造商的另外四个DDR3 DRAM设备验证了我们的观察结果。我们的研究结果表明,每个设备中的许多细胞产生随机数据,这些数据在时间和温度变化中都保持稳健。我们利用我们的观察结果开发了D-RanGe,这是一种通过故意违反读访问时序参数,从具有高吞吐量和低延迟的商品DRAM设备中提取真随机数的方法。我们使用常用的NIST随机性统计测试套件来评估我们的TRNG的质量,并发现D-RaNGe: 1)成功地通过了每个测试,2)生成的真实随机数的吞吐量比以前最高吞吐量的基于dram的TRNG高两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput
We propose a new DRAM-based true random number generator (TRNG) that leverages DRAM cells as an entropy source. The key idea is to intentionally violate the DRAM access timing parameters and use the resulting errors as the source of randomness. Our technique specifically decreases the DRAM row activation latency (timing parameter tRCD) below manufacturer-recommended specifications, to induce read errors, or activation failures, that exhibit true random behavior. We then aggregate the resulting data from multiple cells to obtain a TRNG capable of providing a high throughput of random numbers at low latency. To demonstrate that our TRNG design is viable using commodity DRAM chips, we rigorously characterize the behavior of activation failures in 282 state-of-the-art LPDDR4 devices from three major DRAM manufacturers. We verify our observations using four additional DDR3 DRAM devices from the same manufacturers. Our results show that many cells in each device produce random data that remains robust over both time and temperature variation. We use our observations to develop D-RanGe, a methodology for extracting true random numbers from commodity DRAM devices with high throughput and low latency by deliberately violating the read access timing parameters. We evaluate the quality of our TRNG using the commonly-used NIST statistical test suite for randomness and find that D-RaNGe: 1) successfully passes each test, and 2) generates true random numbers with over two orders of magnitude higher throughput than the previous highest-throughput DRAM-based TRNG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning at Facebook: Understanding Inference at the Edge Understanding the Future of Energy Efficiency in Multi-Module GPUs POWERT Channels: A Novel Class of Covert CommunicationExploiting Power Management Vulnerabilities The Accelerator Wall: Limits of Chip Specialization Featherlight Reuse-Distance Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1