基于空间约束的辐射转移模型改进的甘蔗LAI估算

Yingpin Yang, Qiting Huang, Jiancheng Luo, Wei Wu, Yingwei Sun
{"title":"基于空间约束的辐射转移模型改进的甘蔗LAI估算","authors":"Yingpin Yang, Qiting Huang, Jiancheng Luo, Wei Wu, Yingwei Sun","doi":"10.1109/Agro-Geoinformatics.2019.8820249","DOIUrl":null,"url":null,"abstract":"Sugarcane crop, cultivated in subtropical and tropical regions, provides major sugar supply, and makes great contributions to human life and economic development. The sugarcane leaf area index (LAI) is highly related to the production. Our research aims at estimating sugarcane LAI through remote sensing observations. The physically-based radiative transfer model (RTM) inversion methods are widely applied in vegetation variable estimation. However, ill-posedness problem widely exists in the model inversion processes. Therefore, the study develops a spatial constraint method to regularize the RTM inversion, and LAI variable is estimated on object-level. The estimated object-level LAI variable is compared with the pixel-level, and validated using the SNAP biophysical processor. The results shows that the object-level LAI estimates show great performance.","PeriodicalId":143731,"journal":{"name":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved sugarcane LAI estimation using radiative transfer models with spatial constraint\",\"authors\":\"Yingpin Yang, Qiting Huang, Jiancheng Luo, Wei Wu, Yingwei Sun\",\"doi\":\"10.1109/Agro-Geoinformatics.2019.8820249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sugarcane crop, cultivated in subtropical and tropical regions, provides major sugar supply, and makes great contributions to human life and economic development. The sugarcane leaf area index (LAI) is highly related to the production. Our research aims at estimating sugarcane LAI through remote sensing observations. The physically-based radiative transfer model (RTM) inversion methods are widely applied in vegetation variable estimation. However, ill-posedness problem widely exists in the model inversion processes. Therefore, the study develops a spatial constraint method to regularize the RTM inversion, and LAI variable is estimated on object-level. The estimated object-level LAI variable is compared with the pixel-level, and validated using the SNAP biophysical processor. The results shows that the object-level LAI estimates show great performance.\",\"PeriodicalId\":143731,\"journal\":{\"name\":\"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Agro-Geoinformatics.2019.8820249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Agro-Geoinformatics.2019.8820249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

甘蔗作物种植在亚热带和热带地区,是主要的食糖供应来源,为人类生活和经济发展做出了巨大贡献。甘蔗叶面积指数(LAI)与产量密切相关。本研究旨在通过遥感观测估算甘蔗LAI。基于物理的辐射传输模型(RTM)反演方法在植被变量估计中得到了广泛的应用。然而,在模型反演过程中普遍存在病态性问题。因此,本研究提出了一种空间约束方法对RTM反演进行正则化,并在目标层面估计LAI变量。将估计的目标级LAI变量与像素级进行比较,并使用SNAP生物物理处理器进行验证。结果表明,目标级LAI估计具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved sugarcane LAI estimation using radiative transfer models with spatial constraint
Sugarcane crop, cultivated in subtropical and tropical regions, provides major sugar supply, and makes great contributions to human life and economic development. The sugarcane leaf area index (LAI) is highly related to the production. Our research aims at estimating sugarcane LAI through remote sensing observations. The physically-based radiative transfer model (RTM) inversion methods are widely applied in vegetation variable estimation. However, ill-posedness problem widely exists in the model inversion processes. Therefore, the study develops a spatial constraint method to regularize the RTM inversion, and LAI variable is estimated on object-level. The estimated object-level LAI variable is compared with the pixel-level, and validated using the SNAP biophysical processor. The results shows that the object-level LAI estimates show great performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Archiving System of Rural Land Contractual Management Right Data using Multithreading and Distributed Storage Technology Winter Wheat Drought Monitoring with Multi-temporal MODIS data and AquaCrop Model—A Case Study in Henan Province Rice yield estimation at pixel scale using relative vegetation indices from unmanned aerial systems Research on Cotton Information Extraction Based on Sentinel-2 Time Series Analysis Impacts of El Nino Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) on the Olive Yield in the Mediterranean Region, Turkey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1