基于结构标度原理的多层小通道散热器几何标度变化研究

A. Ortega, K. S. H. Potluri, B. Hassel
{"title":"基于结构标度原理的多层小通道散热器几何标度变化研究","authors":"A. Ortega, K. S. H. Potluri, B. Hassel","doi":"10.1109/STHERM.2011.5767205","DOIUrl":null,"url":null,"abstract":"In previous work, we have shown that in single phase flow, stacked multi-layer liquid cooled heat sinks with square or circular channels have advantages over traditional single layer designs with high aspect ratio channels. In particular, it has been found that the thermal performance per unit pressure drop, as characterized by cost effectiveness metric, can be superior when properly optimized. The primary benefits seem to be increased surface area per unit volume available for convective cooling and increased flow area without sacrificing heat conduction paths to the coolant channel surfaces. The principle drawback of stacked multi-layer heat sinks is the difficulty in conducting heat through the metal matrix to the coolant channels farthest from the surface where heat is applied. In previous work we used validated twoequation porous media formulations to model the behavior of these “deterministic” porous heat sinks with good success. Porous media formulations reduce the geometric complexity of the problem to two parameters, namely porosity and pore diameter. With this approach, it was shown that geometric scale variation, in which either the characteristic pore diameter of the channels in each layer or the layer porosity was allowed to vary from layer to layer, could result in lower thermal resistance and lower pressure drop, compared to heat sinks in which the pore diameter and porosity were uniform. Furthermore, the behavior of pore-diameter scaled compared to porosity-scaled heat sinks was quite distinct. In the present study, we examine the behavior of deterministic stacked mini-channel heat sinks with parallel channels of square cross section, where the porosity is varied from layer to layer, but the channel diameter is fixed. The scaling rules, developed in the porous media equivalent models, are based on biologically inspired constructal principles. Such scaling principles have lead to superior optimal designs in a number of engineering applications. Experimentally validated conjugate CFD simulations were used to characterize the heat sinks. It was found that when the porosity is allowed to increase away from the surface onto which heat is applied, the increased mass flow and advection counteracts the cumulative conduction resistance thereby producing a more isothermal heat sink and a lower overall thermal resistance. Increasing the porosity away from the heat source also increased the flow area thereby producing lower overall pressure drop, compared to a non-scaled heat sink, in which the first layer of channels is the same in both cases. The volumetric thermal performance of the porosity scaled heat sinks exceeded the performance of non scaled heat sinks over a wide range of porosity scaling ratios and the pressure drop was consistently lower.","PeriodicalId":128077,"journal":{"name":"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An investigation of multi-layer mini-channel heat sinks with channel geometric scale variation suggested by constructal scaling principles\",\"authors\":\"A. Ortega, K. S. H. Potluri, B. Hassel\",\"doi\":\"10.1109/STHERM.2011.5767205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In previous work, we have shown that in single phase flow, stacked multi-layer liquid cooled heat sinks with square or circular channels have advantages over traditional single layer designs with high aspect ratio channels. In particular, it has been found that the thermal performance per unit pressure drop, as characterized by cost effectiveness metric, can be superior when properly optimized. The primary benefits seem to be increased surface area per unit volume available for convective cooling and increased flow area without sacrificing heat conduction paths to the coolant channel surfaces. The principle drawback of stacked multi-layer heat sinks is the difficulty in conducting heat through the metal matrix to the coolant channels farthest from the surface where heat is applied. In previous work we used validated twoequation porous media formulations to model the behavior of these “deterministic” porous heat sinks with good success. Porous media formulations reduce the geometric complexity of the problem to two parameters, namely porosity and pore diameter. With this approach, it was shown that geometric scale variation, in which either the characteristic pore diameter of the channels in each layer or the layer porosity was allowed to vary from layer to layer, could result in lower thermal resistance and lower pressure drop, compared to heat sinks in which the pore diameter and porosity were uniform. Furthermore, the behavior of pore-diameter scaled compared to porosity-scaled heat sinks was quite distinct. In the present study, we examine the behavior of deterministic stacked mini-channel heat sinks with parallel channels of square cross section, where the porosity is varied from layer to layer, but the channel diameter is fixed. The scaling rules, developed in the porous media equivalent models, are based on biologically inspired constructal principles. Such scaling principles have lead to superior optimal designs in a number of engineering applications. Experimentally validated conjugate CFD simulations were used to characterize the heat sinks. It was found that when the porosity is allowed to increase away from the surface onto which heat is applied, the increased mass flow and advection counteracts the cumulative conduction resistance thereby producing a more isothermal heat sink and a lower overall thermal resistance. Increasing the porosity away from the heat source also increased the flow area thereby producing lower overall pressure drop, compared to a non-scaled heat sink, in which the first layer of channels is the same in both cases. The volumetric thermal performance of the porosity scaled heat sinks exceeded the performance of non scaled heat sinks over a wide range of porosity scaling ratios and the pressure drop was consistently lower.\",\"PeriodicalId\":128077,\"journal\":{\"name\":\"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STHERM.2011.5767205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STHERM.2011.5767205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在之前的工作中,我们已经证明了在单相流中,具有方形或圆形通道的堆叠多层液冷散热器比具有高纵横比通道的传统单层设计具有优势。特别是,当适当优化时,以成本效益度量为特征的单位压降热性能可以更优越。主要的好处似乎是增加了对流冷却的单位体积表面积,增加了流动面积,而不会牺牲冷却剂通道表面的热传导路径。堆叠多层散热器的主要缺点是很难通过金属基体将热量传导到离表面最远的冷却剂通道。在以前的工作中,我们使用经过验证的两方程多孔介质公式来模拟这些“确定性”多孔散热器的行为,并取得了很好的成功。多孔介质配方将问题的几何复杂性降低到两个参数,即孔隙度和孔径。通过这种方法,研究表明,与孔径和孔隙率均匀的散热器相比,允许每层通道的特征孔径或层孔隙率随层而变化的几何尺度变化可以产生更小的热阻和更小的压降。此外,与孔隙率尺度的散热器相比,孔径尺度的散热器的行为是非常不同的。在本研究中,我们研究了具有方形截面平行通道的确定性堆叠小通道散热器的行为,其中孔隙率随层而变化,但通道直径是固定的。在多孔介质等效模型中开发的缩放规则是基于生物学启发的结构原则。这种标度原理在许多工程应用中导致了卓越的优化设计。采用实验验证的共轭CFD模拟对散热器进行了表征。研究发现,当允许孔隙度在远离受热表面的地方增加时,增加的质量流和平流抵消了累积的传导阻力,从而产生更等温的热沉和更低的总热阻。与无垢散热器相比,增加远离热源的孔隙度也增加了流动面积,从而产生更低的总压降,在无垢散热器中,第一层通道在两种情况下都是相同的。在较宽的孔隙度结垢比范围内,孔隙度结垢散热器的体积热性能优于未结垢散热器,且压降始终较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An investigation of multi-layer mini-channel heat sinks with channel geometric scale variation suggested by constructal scaling principles
In previous work, we have shown that in single phase flow, stacked multi-layer liquid cooled heat sinks with square or circular channels have advantages over traditional single layer designs with high aspect ratio channels. In particular, it has been found that the thermal performance per unit pressure drop, as characterized by cost effectiveness metric, can be superior when properly optimized. The primary benefits seem to be increased surface area per unit volume available for convective cooling and increased flow area without sacrificing heat conduction paths to the coolant channel surfaces. The principle drawback of stacked multi-layer heat sinks is the difficulty in conducting heat through the metal matrix to the coolant channels farthest from the surface where heat is applied. In previous work we used validated twoequation porous media formulations to model the behavior of these “deterministic” porous heat sinks with good success. Porous media formulations reduce the geometric complexity of the problem to two parameters, namely porosity and pore diameter. With this approach, it was shown that geometric scale variation, in which either the characteristic pore diameter of the channels in each layer or the layer porosity was allowed to vary from layer to layer, could result in lower thermal resistance and lower pressure drop, compared to heat sinks in which the pore diameter and porosity were uniform. Furthermore, the behavior of pore-diameter scaled compared to porosity-scaled heat sinks was quite distinct. In the present study, we examine the behavior of deterministic stacked mini-channel heat sinks with parallel channels of square cross section, where the porosity is varied from layer to layer, but the channel diameter is fixed. The scaling rules, developed in the porous media equivalent models, are based on biologically inspired constructal principles. Such scaling principles have lead to superior optimal designs in a number of engineering applications. Experimentally validated conjugate CFD simulations were used to characterize the heat sinks. It was found that when the porosity is allowed to increase away from the surface onto which heat is applied, the increased mass flow and advection counteracts the cumulative conduction resistance thereby producing a more isothermal heat sink and a lower overall thermal resistance. Increasing the porosity away from the heat source also increased the flow area thereby producing lower overall pressure drop, compared to a non-scaled heat sink, in which the first layer of channels is the same in both cases. The volumetric thermal performance of the porosity scaled heat sinks exceeded the performance of non scaled heat sinks over a wide range of porosity scaling ratios and the pressure drop was consistently lower.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data center design using improved CFD modeling and cost reduction analysis Data center efficiency with higher ambient temperatures and optimized cooling control Effect of server load variation on rack air flow distribution in a raised floor data center Thermal design in the Design for Six Sigma — DIDOV framework ASIC package lid effects on temperature and lifetime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1