基于混合智能方法的设备模型参数自动提取

cheng-che liu, Yiming Li, Ya-Shu Yang, Chieh-Yang Chen, Min-Hui Chuang
{"title":"基于混合智能方法的设备模型参数自动提取","authors":"cheng-che liu, Yiming Li, Ya-Shu Yang, Chieh-Yang Chen, Min-Hui Chuang","doi":"10.23919/SISPAD49475.2020.9241613","DOIUrl":null,"url":null,"abstract":"We report an advanced hybrid intelligent methodology for device model parameter extractions combining multiobjective evolutionary algorithms, numerical optimization methods, and unsupervised learning neural networks on a unified optimization framework. The results between experimentally measured data and the calculation from industrial standard compact models are accurate, stable and convergent rapidly for all I-V curves. Verifications from diodes, bipolar transistors, MOSFETs, FinFETs, to nanowire MOSFETs confirm the robustness of the developed prototype, where the extraction is within 5% of accuracy.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Device Model Parameter Extractions via Hybrid Intelligent Methodology\",\"authors\":\"cheng-che liu, Yiming Li, Ya-Shu Yang, Chieh-Yang Chen, Min-Hui Chuang\",\"doi\":\"10.23919/SISPAD49475.2020.9241613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report an advanced hybrid intelligent methodology for device model parameter extractions combining multiobjective evolutionary algorithms, numerical optimization methods, and unsupervised learning neural networks on a unified optimization framework. The results between experimentally measured data and the calculation from industrial standard compact models are accurate, stable and convergent rapidly for all I-V curves. Verifications from diodes, bipolar transistors, MOSFETs, FinFETs, to nanowire MOSFETs confirm the robustness of the developed prototype, where the extraction is within 5% of accuracy.\",\"PeriodicalId\":206964,\"journal\":{\"name\":\"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SISPAD49475.2020.9241613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了一种先进的混合智能方法,用于设备模型参数提取,将多目标进化算法、数值优化方法和无监督学习神经网络结合在一个统一的优化框架上。实验测量数据与工业标准紧凑模型计算结果吻合准确、稳定、收敛速度快。从二极管、双极晶体管、mosfet、finfet到纳米线mosfet的验证证实了所开发原型的稳健性,其中提取精度在5%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Device Model Parameter Extractions via Hybrid Intelligent Methodology
We report an advanced hybrid intelligent methodology for device model parameter extractions combining multiobjective evolutionary algorithms, numerical optimization methods, and unsupervised learning neural networks on a unified optimization framework. The results between experimentally measured data and the calculation from industrial standard compact models are accurate, stable and convergent rapidly for all I-V curves. Verifications from diodes, bipolar transistors, MOSFETs, FinFETs, to nanowire MOSFETs confirm the robustness of the developed prototype, where the extraction is within 5% of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power Device Degradation Estimation by Machine Learning of Gate Waveforms Numerical Solution of the Constrained Wigner Equation Nanoscale FET: How To Make Atomistic Simulation Versatile, Predictive, and Fast at 5nm Node and Below Fully Analog ReRAM Neuromorphic Circuit Optimization using DTCO Simulation Framework Analytical Formulae for the Surface Green’s Functions of Graphene and 1T’ MoS2 Nanoribbons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1