{"title":"表面贴装技术(SMT)焊点的振动疲劳","authors":"S. Liguore, D. Followell","doi":"10.1109/RAMS.1995.513218","DOIUrl":null,"url":null,"abstract":"Recent trends in reliability analysis of electronics has involved developing structural integrity models for predicting the failure free operating lifetime under vibratory and thermal environmental exposure. This paper describes a test program which was performed to obtain structural fatigue data for SMT solder joints exposed to a random vibration environment. A total of eight printed circuit board specimens with nine surface mounted components were fabricated and tested. Vibration time to failure data for individual solder joints of the SMT components were recorded. These data became the basis for understanding the physics of \"why and how\" SMT solder joints fail under vibration loading. Using procedures similar to those developed for aerospace structures, a fatigue model was developed that is based on the physics of the problem.","PeriodicalId":143102,"journal":{"name":"Annual Reliability and Maintainability Symposium 1995 Proceedings","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Vibration fatigue of surface mount technology (SMT) solder joints\",\"authors\":\"S. Liguore, D. Followell\",\"doi\":\"10.1109/RAMS.1995.513218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent trends in reliability analysis of electronics has involved developing structural integrity models for predicting the failure free operating lifetime under vibratory and thermal environmental exposure. This paper describes a test program which was performed to obtain structural fatigue data for SMT solder joints exposed to a random vibration environment. A total of eight printed circuit board specimens with nine surface mounted components were fabricated and tested. Vibration time to failure data for individual solder joints of the SMT components were recorded. These data became the basis for understanding the physics of \\\"why and how\\\" SMT solder joints fail under vibration loading. Using procedures similar to those developed for aerospace structures, a fatigue model was developed that is based on the physics of the problem.\",\"PeriodicalId\":143102,\"journal\":{\"name\":\"Annual Reliability and Maintainability Symposium 1995 Proceedings\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Reliability and Maintainability Symposium 1995 Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMS.1995.513218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reliability and Maintainability Symposium 1995 Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS.1995.513218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vibration fatigue of surface mount technology (SMT) solder joints
Recent trends in reliability analysis of electronics has involved developing structural integrity models for predicting the failure free operating lifetime under vibratory and thermal environmental exposure. This paper describes a test program which was performed to obtain structural fatigue data for SMT solder joints exposed to a random vibration environment. A total of eight printed circuit board specimens with nine surface mounted components were fabricated and tested. Vibration time to failure data for individual solder joints of the SMT components were recorded. These data became the basis for understanding the physics of "why and how" SMT solder joints fail under vibration loading. Using procedures similar to those developed for aerospace structures, a fatigue model was developed that is based on the physics of the problem.