基于MapReduce的并行Top-K相似度连接算法

Younghoon Kim, Kyuseok Shim
{"title":"基于MapReduce的并行Top-K相似度连接算法","authors":"Younghoon Kim, Kyuseok Shim","doi":"10.1109/ICDE.2012.87","DOIUrl":null,"url":null,"abstract":"There is a wide range of applications that require finding the top-k most similar pairs of records in a given database. However, computing such top-k similarity joins is a challenging problem today, as there is an increasing trend of applications that expect to deal with vast amounts of data. For such data-intensive applications, parallel executions of programs on a large cluster of commodity machines using the MapReduce paradigm have recently received a lot of attention. In this paper, we investigate how the top-k similarity join algorithms can get benefits from the popular MapReduce framework. We first develop the divide-and-conquer and branch-and-bound algorithms. We next propose the all pair partitioning and essential pair partitioning methods to minimize the amount of data transfers between map and reduce functions. We finally perform the experiments with not only synthetic but also real-life data sets. Our performance study confirms the effectiveness and scalability of our MapReduce algorithms.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"Parallel Top-K Similarity Join Algorithms Using MapReduce\",\"authors\":\"Younghoon Kim, Kyuseok Shim\",\"doi\":\"10.1109/ICDE.2012.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a wide range of applications that require finding the top-k most similar pairs of records in a given database. However, computing such top-k similarity joins is a challenging problem today, as there is an increasing trend of applications that expect to deal with vast amounts of data. For such data-intensive applications, parallel executions of programs on a large cluster of commodity machines using the MapReduce paradigm have recently received a lot of attention. In this paper, we investigate how the top-k similarity join algorithms can get benefits from the popular MapReduce framework. We first develop the divide-and-conquer and branch-and-bound algorithms. We next propose the all pair partitioning and essential pair partitioning methods to minimize the amount of data transfers between map and reduce functions. We finally perform the experiments with not only synthetic but also real-life data sets. Our performance study confirms the effectiveness and scalability of our MapReduce algorithms.\",\"PeriodicalId\":321608,\"journal\":{\"name\":\"2012 IEEE 28th International Conference on Data Engineering\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 28th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2012.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

摘要

有很多应用程序需要在给定的数据库中查找top-k最相似的记录对。然而,计算这种top-k相似性连接在今天是一个具有挑战性的问题,因为期望处理大量数据的应用程序越来越多。对于这样的数据密集型应用程序,使用MapReduce范式在大型商用机器集群上并行执行程序最近受到了很多关注。在本文中,我们研究了top-k相似度连接算法如何从流行的MapReduce框架中获益。我们首先发展了分治算法和分支定界算法。接下来,我们提出了全对划分和基本对划分方法,以最小化映射函数和约简函数之间的数据传输量。最后,我们不仅使用合成数据集,还使用真实数据集进行实验。我们的性能研究证实了MapReduce算法的有效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel Top-K Similarity Join Algorithms Using MapReduce
There is a wide range of applications that require finding the top-k most similar pairs of records in a given database. However, computing such top-k similarity joins is a challenging problem today, as there is an increasing trend of applications that expect to deal with vast amounts of data. For such data-intensive applications, parallel executions of programs on a large cluster of commodity machines using the MapReduce paradigm have recently received a lot of attention. In this paper, we investigate how the top-k similarity join algorithms can get benefits from the popular MapReduce framework. We first develop the divide-and-conquer and branch-and-bound algorithms. We next propose the all pair partitioning and essential pair partitioning methods to minimize the amount of data transfers between map and reduce functions. We finally perform the experiments with not only synthetic but also real-life data sets. Our performance study confirms the effectiveness and scalability of our MapReduce algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keyword Query Reformulation on Structured Data Accuracy-Aware Uncertain Stream Databases Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks Project Daytona: Data Analytics as a Cloud Service Automatic Extraction of Structured Web Data with Domain Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1