基于神经网络的动态ReLU

Jiong Si, Sarah L. Harris, E. Yfantis
{"title":"基于神经网络的动态ReLU","authors":"Jiong Si, Sarah L. Harris, E. Yfantis","doi":"10.1109/DCAS.2018.8620116","DOIUrl":null,"url":null,"abstract":"In this paper we propose a dynamic Rectified Linear Unit (D-ReLU) activation function for a multi-layer perceptron (MLP) learning network. We also implement the forward propagation of 2- and 3-layer multi-layer perceptron (MLP) networks with this D-ReLU function on a Cyclone IVE field programmable gate array (FPGA) using 8-bit precision. When compared to networks that use the approximated Sigmoid activation function, our proposed D-ReLU function uses 18-23% less area with only a 0.7-2.9% loss in accuracy. Moreover, the simplified calculations of the D-ReLU function result in 14% and 57% decreases in software execution time than Sigmoid function. In the FPGA hardware implementation, the D-ReLU function uses two fewer clock cycles per layer than the approximated Sigmoid activation function. Thus, using the D-ReLU activation function in MLP networks results in reduced area on an FPGA and lower execution time in software. In addition, the FPGA implementation runs at a 60× lower clock rate than the software version with a 29× faster execution time, indicating a potential of over 1,700× power savings.","PeriodicalId":320317,"journal":{"name":"2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A Dynamic ReLU on Neural Network\",\"authors\":\"Jiong Si, Sarah L. Harris, E. Yfantis\",\"doi\":\"10.1109/DCAS.2018.8620116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a dynamic Rectified Linear Unit (D-ReLU) activation function for a multi-layer perceptron (MLP) learning network. We also implement the forward propagation of 2- and 3-layer multi-layer perceptron (MLP) networks with this D-ReLU function on a Cyclone IVE field programmable gate array (FPGA) using 8-bit precision. When compared to networks that use the approximated Sigmoid activation function, our proposed D-ReLU function uses 18-23% less area with only a 0.7-2.9% loss in accuracy. Moreover, the simplified calculations of the D-ReLU function result in 14% and 57% decreases in software execution time than Sigmoid function. In the FPGA hardware implementation, the D-ReLU function uses two fewer clock cycles per layer than the approximated Sigmoid activation function. Thus, using the D-ReLU activation function in MLP networks results in reduced area on an FPGA and lower execution time in software. In addition, the FPGA implementation runs at a 60× lower clock rate than the software version with a 29× faster execution time, indicating a potential of over 1,700× power savings.\",\"PeriodicalId\":320317,\"journal\":{\"name\":\"2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCAS.2018.8620116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 13th Dallas Circuits and Systems Conference (DCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCAS.2018.8620116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文提出了一种用于多层感知器(MLP)学习网络的动态整流线性单元(D-ReLU)激活函数。我们还利用该D-ReLU功能在Cyclone IVE现场可编程门阵列(FPGA)上使用8位精度实现了2层和3层多层感知器(MLP)网络的前向传播。与使用近似Sigmoid激活函数的网络相比,我们提出的D-ReLU函数使用的面积减少了18-23%,精度损失仅为0.7-2.9%。D-ReLU函数的简化计算使软件执行时间比Sigmoid函数分别减少14%和57%。在FPGA硬件实现中,D-ReLU函数每层使用的时钟周期比近似的Sigmoid激活函数少两个。因此,在MLP网络中使用D-ReLU激活函数可以减少FPGA上的面积并降低软件的执行时间。此外,FPGA实现的时钟速率比软件版本低60倍,执行时间快29倍,这表明可能节省超过1,700倍的功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Dynamic ReLU on Neural Network
In this paper we propose a dynamic Rectified Linear Unit (D-ReLU) activation function for a multi-layer perceptron (MLP) learning network. We also implement the forward propagation of 2- and 3-layer multi-layer perceptron (MLP) networks with this D-ReLU function on a Cyclone IVE field programmable gate array (FPGA) using 8-bit precision. When compared to networks that use the approximated Sigmoid activation function, our proposed D-ReLU function uses 18-23% less area with only a 0.7-2.9% loss in accuracy. Moreover, the simplified calculations of the D-ReLU function result in 14% and 57% decreases in software execution time than Sigmoid function. In the FPGA hardware implementation, the D-ReLU function uses two fewer clock cycles per layer than the approximated Sigmoid activation function. Thus, using the D-ReLU activation function in MLP networks results in reduced area on an FPGA and lower execution time in software. In addition, the FPGA implementation runs at a 60× lower clock rate than the software version with a 29× faster execution time, indicating a potential of over 1,700× power savings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Differential Low-Power Voltage-Clamped ISFET Topology for Biomedical Applications Memory Optimization Techniques for FPGA based CNN Implementations Dual-Path Component Based Digital Receiver Linearization With a Very Non-linear Auxiliary Path Biomimetic, Soft-Material Synapse for Neuromorphic Computing: from Device to Network A Broadband Spectrum Channelizer with PWM-LO Based Sub-Band Equalization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1