定义可信赖AI野花监测平台的质量要求

P. Heck, Gerard Schouten
{"title":"定义可信赖AI野花监测平台的质量要求","authors":"P. Heck, Gerard Schouten","doi":"10.1109/CAIN58948.2023.00029","DOIUrl":null,"url":null,"abstract":"For an AI solution to evolve from a trained machine learning model into a production-ready AI system, many more things need to be considered than just the performance of the machine learning model. A production-ready AI system needs to be trustworthy, i.e. of high quality. But how to determine this in practiceƒ For traditional software, ISO25000 and its predecessors have since long time been used to define and measure quality characteristics. Recently, quality models for AI systems, based on ISO25000, have been introduced. This paper applies one such quality model to a real-life case study: a deep learning platform for monitoring wildflowers. The paper presents three realistic scenarios sketching what it means to respectively use, extend and incrementally improve the deep learning platform for wildflower identification and counting. Next, it is shown how the quality model can be used as a structured dictionary to define quality requirements for data, model and software. Future work remains to extend the quality model with metrics, tools and best practices to aid AI engineering practitioners in implementing trustworthy AI systems.","PeriodicalId":175580,"journal":{"name":"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)","volume":"42 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defining Quality Requirements for a Trustworthy AI Wildflower Monitoring Platform\",\"authors\":\"P. Heck, Gerard Schouten\",\"doi\":\"10.1109/CAIN58948.2023.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an AI solution to evolve from a trained machine learning model into a production-ready AI system, many more things need to be considered than just the performance of the machine learning model. A production-ready AI system needs to be trustworthy, i.e. of high quality. But how to determine this in practiceƒ For traditional software, ISO25000 and its predecessors have since long time been used to define and measure quality characteristics. Recently, quality models for AI systems, based on ISO25000, have been introduced. This paper applies one such quality model to a real-life case study: a deep learning platform for monitoring wildflowers. The paper presents three realistic scenarios sketching what it means to respectively use, extend and incrementally improve the deep learning platform for wildflower identification and counting. Next, it is shown how the quality model can be used as a structured dictionary to define quality requirements for data, model and software. Future work remains to extend the quality model with metrics, tools and best practices to aid AI engineering practitioners in implementing trustworthy AI systems.\",\"PeriodicalId\":175580,\"journal\":{\"name\":\"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)\",\"volume\":\"42 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAIN58948.2023.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIN58948.2023.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了使人工智能解决方案从训练有素的机器学习模型演变为生产就绪的人工智能系统,除了机器学习模型的性能之外,还需要考虑更多的事情。生产就绪的人工智能系统需要值得信赖,即高质量。但是在实践中如何确定呢?对于传统软件来说,ISO25000及其前身长期以来一直被用来定义和测量质量特性。最近,基于ISO25000的人工智能系统质量模型已经被引入。本文将一个这样的质量模型应用于一个现实生活中的案例研究:一个监测野花的深度学习平台。本文提出了三种现实场景,概述了分别使用、扩展和逐步改进用于野花识别和计数的深度学习平台的意义。接下来,展示了如何将质量模型用作结构化字典来定义数据、模型和软件的质量需求。未来的工作仍然是用度量、工具和最佳实践来扩展质量模型,以帮助人工智能工程从业者实现值得信赖的人工智能系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Defining Quality Requirements for a Trustworthy AI Wildflower Monitoring Platform
For an AI solution to evolve from a trained machine learning model into a production-ready AI system, many more things need to be considered than just the performance of the machine learning model. A production-ready AI system needs to be trustworthy, i.e. of high quality. But how to determine this in practiceƒ For traditional software, ISO25000 and its predecessors have since long time been used to define and measure quality characteristics. Recently, quality models for AI systems, based on ISO25000, have been introduced. This paper applies one such quality model to a real-life case study: a deep learning platform for monitoring wildflowers. The paper presents three realistic scenarios sketching what it means to respectively use, extend and incrementally improve the deep learning platform for wildflower identification and counting. Next, it is shown how the quality model can be used as a structured dictionary to define quality requirements for data, model and software. Future work remains to extend the quality model with metrics, tools and best practices to aid AI engineering practitioners in implementing trustworthy AI systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
safe.trAIn – Engineering and Assurance of a Driverless Regional Train Extensible Modeling Framework for Reliable Machine Learning System Analysis Maintaining and Monitoring AIOps Models Against Concept Drift Conceptualising Software Development Lifecycle for Engineering AI Planning Systems Reproducibility Requires Consolidated Artifacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1