{"title":"fpga启发神经网络的片上学习","authors":"B. Girau","doi":"10.1109/IJCNN.2001.939021","DOIUrl":null,"url":null,"abstract":"Neural networks are usually considered as naturally parallel computing models. But the number of operators and the complex connection graphs of standard neural models can not be handled by digital hardware devices. A new theoretical and practical framework allows to reconcile simple hardware topologies with complex neural architectures: field programmable neural arrays (FPNA) lead to powerful neural architectures that are easy to map onto digital hardware, thanks to a simplified topology and an original data exchange scheme. The paper focuses on a class of synchronous FPNAs, for which an efficient implementation with on-chip learning is described. Application and implementation results are discussed.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On-chip learning of FPGA-inspired neural nets\",\"authors\":\"B. Girau\",\"doi\":\"10.1109/IJCNN.2001.939021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks are usually considered as naturally parallel computing models. But the number of operators and the complex connection graphs of standard neural models can not be handled by digital hardware devices. A new theoretical and practical framework allows to reconcile simple hardware topologies with complex neural architectures: field programmable neural arrays (FPNA) lead to powerful neural architectures that are easy to map onto digital hardware, thanks to a simplified topology and an original data exchange scheme. The paper focuses on a class of synchronous FPNAs, for which an efficient implementation with on-chip learning is described. Application and implementation results are discussed.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.939021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.939021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

神经网络通常被认为是一种天然的并行计算模型。但是标准神经模型的算子数量和复杂的连接图是数字硬件设备无法处理的。一个新的理论和实践框架允许调和简单的硬件拓扑与复杂的神经架构:现场可编程神经阵列(FPNA)导致强大的神经架构,很容易映射到数字硬件上,这要归功于简化的拓扑和原始的数据交换方案。本文重点介绍了一类同步fpga,并描述了其片上学习的有效实现。讨论了应用和实现结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On-chip learning of FPGA-inspired neural nets
Neural networks are usually considered as naturally parallel computing models. But the number of operators and the complex connection graphs of standard neural models can not be handled by digital hardware devices. A new theoretical and practical framework allows to reconcile simple hardware topologies with complex neural architectures: field programmable neural arrays (FPNA) lead to powerful neural architectures that are easy to map onto digital hardware, thanks to a simplified topology and an original data exchange scheme. The paper focuses on a class of synchronous FPNAs, for which an efficient implementation with on-chip learning is described. Application and implementation results are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1