手机使用对人体内分泌腺的特定吸收率研究

Mai Lu, Xiao-Yan Wu
{"title":"手机使用对人体内分泌腺的特定吸收率研究","authors":"Mai Lu, Xiao-Yan Wu","doi":"10.1109/APEMC.2016.7522951","DOIUrl":null,"url":null,"abstract":"With the quick development and widespread use of mobile phones has led to arising concern about the possible adverse health effects of radio frequency electromagnetic field exposure. This study aims to present the dosimetry analysis of the electromagnetic fields induced by mobile phone on human endocrine glands. A finite-difference time-domain (FDTD) method was employed to calculate the specific absorption rate (SAR) in a realistic human head-neck model from exposure to a generic handset at 1750 MHz. The results show that the locally induced SAR in thyroid gland is much larger than that in both hypophysis and hypothalamus glands. The induced SAR in thyroid for the mobile in short message service (SMS) position is much larger than that in the voice position. However, in all of the examined cases, the SAR values in endocrine glands are all below the IEEE safety standard.","PeriodicalId":358257,"journal":{"name":"2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Study of specific absorption rate (SAR) induced in human endocrine glands for using mobile phones\",\"authors\":\"Mai Lu, Xiao-Yan Wu\",\"doi\":\"10.1109/APEMC.2016.7522951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the quick development and widespread use of mobile phones has led to arising concern about the possible adverse health effects of radio frequency electromagnetic field exposure. This study aims to present the dosimetry analysis of the electromagnetic fields induced by mobile phone on human endocrine glands. A finite-difference time-domain (FDTD) method was employed to calculate the specific absorption rate (SAR) in a realistic human head-neck model from exposure to a generic handset at 1750 MHz. The results show that the locally induced SAR in thyroid gland is much larger than that in both hypophysis and hypothalamus glands. The induced SAR in thyroid for the mobile in short message service (SMS) position is much larger than that in the voice position. However, in all of the examined cases, the SAR values in endocrine glands are all below the IEEE safety standard.\",\"PeriodicalId\":358257,\"journal\":{\"name\":\"2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEMC.2016.7522951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEMC.2016.7522951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随着移动电话的快速发展和广泛使用,人们开始关注射频电磁场暴露对健康可能产生的不良影响。本研究旨在介绍手机电磁场对人体内分泌腺体的剂量学分析。采用时域有限差分(FDTD)方法计算了人体头颈部模型暴露于通用手机1750 MHz波段时的比吸收率(SAR)。结果表明,甲状腺局部诱导的SAR远高于垂体和下丘脑。手机处于短信位置时,其甲状腺诱导SAR值远大于处于语音位置时。然而,在所有检查的病例中,内分泌腺的SAR值均低于IEEE安全标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of specific absorption rate (SAR) induced in human endocrine glands for using mobile phones
With the quick development and widespread use of mobile phones has led to arising concern about the possible adverse health effects of radio frequency electromagnetic field exposure. This study aims to present the dosimetry analysis of the electromagnetic fields induced by mobile phone on human endocrine glands. A finite-difference time-domain (FDTD) method was employed to calculate the specific absorption rate (SAR) in a realistic human head-neck model from exposure to a generic handset at 1750 MHz. The results show that the locally induced SAR in thyroid gland is much larger than that in both hypophysis and hypothalamus glands. The induced SAR in thyroid for the mobile in short message service (SMS) position is much larger than that in the voice position. However, in all of the examined cases, the SAR values in endocrine glands are all below the IEEE safety standard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved hybrid leapfrog ADI-FDTD method for simulating complex electromagnetic environment effects (E3) on a warship with multi-wire antennas SI architecture optimized high speed serial design for PCB cost saving Fault analysis and protection strategy on Contactless Power Transfer system for electric vehicle A U-shaped slot antenna for WLAN and WiMAX applications Time-domain measurement technique to analyze cyclic short-time interference in power supply networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1