将双栅超薄a-IGZO场效应管缩放至30 nm通道长度,在VDS=1 V时具有创纪录的最高Gm,最大559µS/µm,创纪录的低DIBL为10 mV/V,接近理想的SS为63 mV/dec

Kaifei Chen, J. Niu, Guanhua Yang, Meng-xin Liu, Wendong Lu, Fuxi Liao, Kailiang Huang, Xinlv Duan, Congyan Lu, Jiawei Wang, Lingfei Wang, Mengmeng Li, Di Geng, Chao Zhao, Guilei Wang, Nianduan Lu, Ling Li, Ming Liu
{"title":"将双栅超薄a-IGZO场效应管缩放至30 nm通道长度,在VDS=1 V时具有创纪录的最高Gm,最大559µS/µm,创纪录的低DIBL为10 mV/V,接近理想的SS为63 mV/dec","authors":"Kaifei Chen, J. Niu, Guanhua Yang, Meng-xin Liu, Wendong Lu, Fuxi Liao, Kailiang Huang, Xinlv Duan, Congyan Lu, Jiawei Wang, Lingfei Wang, Mengmeng Li, Di Geng, Chao Zhao, Guilei Wang, Nianduan Lu, Ling Li, Ming Liu","doi":"10.1109/vlsitechnologyandcir46769.2022.9830389","DOIUrl":null,"url":null,"abstract":"We experimentally prove that amorphous IGZO FET can be scaled down by connected dual-gate design with enhanced electrostatic control. By connected dual-gate operation and scaled dual stacks, the short channel device (L<inf>CH</inf>=30 nm) achieves near ideal SS of 63 mV/dec and ultra-high on-state current (I<inf>ON</inf>) of 615 µA/µm at V<inf>GS</inf>-V<inf>TH</inf>=2 V&V<inf>DS</inf>=1 V. By this design, record-high transconductance (G<inf>m</inf>) of 559 µS/µm at V<inf>DS</inf>=1 V and record-low drain-induced-barrier-lowering (DIBL) of 10 mV/V are achieved, to our best knowledge, among all the a-IGZO transistors with sub-100 nm channel length reported so far.","PeriodicalId":332454,"journal":{"name":"2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Scaling Dual-Gate Ultra-thin a-IGZO FET to 30 nm Channel Length with Record-high Gm,max of 559 µS/µm at VDS=1 V, Record-low DIBL of 10 mV/V and Nearly Ideal SS of 63 mV/dec\",\"authors\":\"Kaifei Chen, J. Niu, Guanhua Yang, Meng-xin Liu, Wendong Lu, Fuxi Liao, Kailiang Huang, Xinlv Duan, Congyan Lu, Jiawei Wang, Lingfei Wang, Mengmeng Li, Di Geng, Chao Zhao, Guilei Wang, Nianduan Lu, Ling Li, Ming Liu\",\"doi\":\"10.1109/vlsitechnologyandcir46769.2022.9830389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We experimentally prove that amorphous IGZO FET can be scaled down by connected dual-gate design with enhanced electrostatic control. By connected dual-gate operation and scaled dual stacks, the short channel device (L<inf>CH</inf>=30 nm) achieves near ideal SS of 63 mV/dec and ultra-high on-state current (I<inf>ON</inf>) of 615 µA/µm at V<inf>GS</inf>-V<inf>TH</inf>=2 V&V<inf>DS</inf>=1 V. By this design, record-high transconductance (G<inf>m</inf>) of 559 µS/µm at V<inf>DS</inf>=1 V and record-low drain-induced-barrier-lowering (DIBL) of 10 mV/V are achieved, to our best knowledge, among all the a-IGZO transistors with sub-100 nm channel length reported so far.\",\"PeriodicalId\":332454,\"journal\":{\"name\":\"2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/vlsitechnologyandcir46769.2022.9830389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/vlsitechnologyandcir46769.2022.9830389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

实验证明,采用双栅极连接设计和增强的静电控制,可以缩小非晶IGZO场效应管的尺寸。通过连接双栅操作和缩放双堆叠,短通道器件(LCH=30 nm)在VGS-VTH=2 V和vds =1 V时实现了接近理想的63 mV/dec的SS和615µA/µm的超高导通电流(ION)。据我们所知,该设计在VDS=1 V时实现了创纪录的559µS/µm的跨导(Gm)和10 mV/V的极低漏极诱导降垒(DIBL),这是迄今为止报道的所有通道长度低于100 nm的a-IGZO晶体管中实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scaling Dual-Gate Ultra-thin a-IGZO FET to 30 nm Channel Length with Record-high Gm,max of 559 µS/µm at VDS=1 V, Record-low DIBL of 10 mV/V and Nearly Ideal SS of 63 mV/dec
We experimentally prove that amorphous IGZO FET can be scaled down by connected dual-gate design with enhanced electrostatic control. By connected dual-gate operation and scaled dual stacks, the short channel device (LCH=30 nm) achieves near ideal SS of 63 mV/dec and ultra-high on-state current (ION) of 615 µA/µm at VGS-VTH=2 V&VDS=1 V. By this design, record-high transconductance (Gm) of 559 µS/µm at VDS=1 V and record-low drain-induced-barrier-lowering (DIBL) of 10 mV/V are achieved, to our best knowledge, among all the a-IGZO transistors with sub-100 nm channel length reported so far.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 12-bit 8GS/s RF Sampling DAC with Code-Dependent Nonlinearity Compensation and Intersegmental Current-Mismatch Calibration in 5nm FinFET Scalable 1.4 μW cryo-CMOS SP4T multiplexer operating at 10 mK for high-fidelity superconducting qubit measurements A 507 GMACs/J 256-Core Domain Adaptive Systolic-Array-Processor for Wireless Communication and Linear-Algebra Kernels in 12nm FINFET An 81.6dB SNDR 15.625MHz BW 3rd Order CT SDM with a True TI NS Quantizer Energy-Efficient High Bandwidth 6T SRAM Design on Intel 4 CMOS Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1