一种新的半监督特征提取算法

Mingyi He, Xiaogang Qu, Shaohui Mei
{"title":"一种新的半监督特征提取算法","authors":"Mingyi He, Xiaogang Qu, Shaohui Mei","doi":"10.1109/ICIEA.2011.5975623","DOIUrl":null,"url":null,"abstract":"Supervised feature extraction algorithms usually require lots of labeled samples to achieve good performance. However, labeling the samples is often time-consuming and even impractical. Therefore, in this paper, a semi-supervised manifold local Fisher discriminant analysis (SMLFDA) is proposed to take advantage of unlabeled samples as well as labeled samples. The proposed algorithm utilizes local scatter matrix and manifold structure to extract the information from labeled and unlabeled samples, respectively, which significantly improves the accuracy of successive classification application when labeled samples are insufficient. In addition, an exponential form weighting coefficient is proposed to further improve the classification performance. Experiments of hyperspectral classification demonstrate the effectiveness of the proposed semi-supervised feature extraction algorithm.","PeriodicalId":304500,"journal":{"name":"2011 6th IEEE Conference on Industrial Electronics and Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel semi-supervised feature extraction algorithm\",\"authors\":\"Mingyi He, Xiaogang Qu, Shaohui Mei\",\"doi\":\"10.1109/ICIEA.2011.5975623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supervised feature extraction algorithms usually require lots of labeled samples to achieve good performance. However, labeling the samples is often time-consuming and even impractical. Therefore, in this paper, a semi-supervised manifold local Fisher discriminant analysis (SMLFDA) is proposed to take advantage of unlabeled samples as well as labeled samples. The proposed algorithm utilizes local scatter matrix and manifold structure to extract the information from labeled and unlabeled samples, respectively, which significantly improves the accuracy of successive classification application when labeled samples are insufficient. In addition, an exponential form weighting coefficient is proposed to further improve the classification performance. Experiments of hyperspectral classification demonstrate the effectiveness of the proposed semi-supervised feature extraction algorithm.\",\"PeriodicalId\":304500,\"journal\":{\"name\":\"2011 6th IEEE Conference on Industrial Electronics and Applications\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th IEEE Conference on Industrial Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2011.5975623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2011.5975623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

监督特征提取算法通常需要大量的标记样本才能获得良好的性能。然而,标记样品往往是耗时的,甚至不切实际的。因此,本文提出了一种半监督流形局部Fisher判别分析(SMLFDA),既可以利用未标记的样本,也可以利用标记的样本。该算法利用局部散点矩阵和流形结构分别从标记样本和未标记样本中提取信息,在标记样本不足的情况下,显著提高了连续分类应用的准确性。此外,为了进一步提高分类性能,提出了指数形式的加权系数。高光谱分类实验验证了半监督特征提取算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel semi-supervised feature extraction algorithm
Supervised feature extraction algorithms usually require lots of labeled samples to achieve good performance. However, labeling the samples is often time-consuming and even impractical. Therefore, in this paper, a semi-supervised manifold local Fisher discriminant analysis (SMLFDA) is proposed to take advantage of unlabeled samples as well as labeled samples. The proposed algorithm utilizes local scatter matrix and manifold structure to extract the information from labeled and unlabeled samples, respectively, which significantly improves the accuracy of successive classification application when labeled samples are insufficient. In addition, an exponential form weighting coefficient is proposed to further improve the classification performance. Experiments of hyperspectral classification demonstrate the effectiveness of the proposed semi-supervised feature extraction algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The application of soft-switching and frequency synchronization technologies in electromagnetic heater design Modified nearest neighbor fuzzy classification algorithm for ship target recognition The HPCXFGA method of main navigation performance and structure characteristic of the high-speed monohull inland ship Transformerless high step-up DC-DC converter with Cockcroft-Walton voltage multiplier Area efficient system-on-programmable-chip design for a wireless touch-triggered machining probe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1