金融中的神经网络:一个描述性的系统回顾

Dr. K. Riyazahmed
{"title":"金融中的神经网络:一个描述性的系统回顾","authors":"Dr. K. Riyazahmed","doi":"10.46281/IJFB.V5I2.997","DOIUrl":null,"url":null,"abstract":"Traditional statistical methods pose challenges in data analysis due to irregularity in the financial data. To improve accuracy, financial researchers use machine learning architectures for the past two decades. Neural Networks (NN) are a widely used architecture in financial research. Despite the wider usage, NN application in finance is yet to be well defined. Hence, this descriptive study classifies and examines the NN application in finance into four broad categories i.e., investment prediction, credit evaluation, financial distress, and other financial applications. Likewise, the review classifies the NN methods used under each category into standard, optimized and hybrid NN. Further, accuracy measures used by the research work widely differ, in turn, pose challenges for comparison of a NN under each category and reduces the scope of formalizing a theory to choose optimum network model under each category.","PeriodicalId":406435,"journal":{"name":"CompSciRN: Other Machine Learning (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neural Networks in Finance: A Descriptive Systematic Review\",\"authors\":\"Dr. K. Riyazahmed\",\"doi\":\"10.46281/IJFB.V5I2.997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional statistical methods pose challenges in data analysis due to irregularity in the financial data. To improve accuracy, financial researchers use machine learning architectures for the past two decades. Neural Networks (NN) are a widely used architecture in financial research. Despite the wider usage, NN application in finance is yet to be well defined. Hence, this descriptive study classifies and examines the NN application in finance into four broad categories i.e., investment prediction, credit evaluation, financial distress, and other financial applications. Likewise, the review classifies the NN methods used under each category into standard, optimized and hybrid NN. Further, accuracy measures used by the research work widely differ, in turn, pose challenges for comparison of a NN under each category and reduces the scope of formalizing a theory to choose optimum network model under each category.\",\"PeriodicalId\":406435,\"journal\":{\"name\":\"CompSciRN: Other Machine Learning (Topic)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CompSciRN: Other Machine Learning (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46281/IJFB.V5I2.997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Other Machine Learning (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46281/IJFB.V5I2.997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于金融数据的不规则性,传统的统计方法对数据分析提出了挑战。为了提高准确性,过去二十年来,金融研究人员一直在使用机器学习架构。神经网络(NN)是金融研究中广泛使用的一种体系结构。尽管应用广泛,但神经网络在金融领域的应用还没有得到很好的定义。因此,本描述性研究将神经网络在金融领域的应用分为四大类,即投资预测、信用评估、财务困境和其他金融应用。同样,本文将每个类别下使用的神经网络方法分为标准、优化和混合神经网络。此外,研究工作中使用的精度度量差异很大,这反过来又给每个类别下的神经网络的比较带来了挑战,并减少了形式化理论以选择每个类别下最优网络模型的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Networks in Finance: A Descriptive Systematic Review
Traditional statistical methods pose challenges in data analysis due to irregularity in the financial data. To improve accuracy, financial researchers use machine learning architectures for the past two decades. Neural Networks (NN) are a widely used architecture in financial research. Despite the wider usage, NN application in finance is yet to be well defined. Hence, this descriptive study classifies and examines the NN application in finance into four broad categories i.e., investment prediction, credit evaluation, financial distress, and other financial applications. Likewise, the review classifies the NN methods used under each category into standard, optimized and hybrid NN. Further, accuracy measures used by the research work widely differ, in turn, pose challenges for comparison of a NN under each category and reduces the scope of formalizing a theory to choose optimum network model under each category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualizing The Implicit Model Selection Tradeoff Troubleshooting: a Dynamic Solution for Achieving Reliable Fault Detection by Combining Augmented Reality and Machine Learning Policy Optimization Using Semiparametric Models for Dynamic Pricing Policy Gradient Methods Find the Nash Equilibrium in N-player General-sum Linear-quadratic Games Deep Learning under Model Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1