带噪声整形的有损网络低延迟预测编码的固定滞后平滑

Thomas Arildsen, Jan Østergaard, M. Murthi, S. Andersen, S. H. Jensen
{"title":"带噪声整形的有损网络低延迟预测编码的固定滞后平滑","authors":"Thomas Arildsen, Jan Østergaard, M. Murthi, S. Andersen, S. H. Jensen","doi":"10.1109/DCC.2010.33","DOIUrl":null,"url":null,"abstract":"We consider linear predictive coding and noise shaping for coding and transmission of auto-regressive (AR) sources over lossy networks. We generalize an existing framework to arbitrary filter orders and propose use of fixed-lag smoothing at the decoder, in order to further reduce the impact of transmission failures. We show that fixed-lag smoothing up to a certain delay can be obtained without additional computational complexity by exploiting the state-space structure. We prove that the proposed smoothing strategy strictly improves performance under quite general conditions. Finally, we provide simulations on AR sources, and channels with correlated losses, and show that substantial improvements are possible.","PeriodicalId":299459,"journal":{"name":"2010 Data Compression Conference","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fixed-Lag Smoothing for Low-Delay Predictive Coding with Noise Shaping for Lossy Networks\",\"authors\":\"Thomas Arildsen, Jan Østergaard, M. Murthi, S. Andersen, S. H. Jensen\",\"doi\":\"10.1109/DCC.2010.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider linear predictive coding and noise shaping for coding and transmission of auto-regressive (AR) sources over lossy networks. We generalize an existing framework to arbitrary filter orders and propose use of fixed-lag smoothing at the decoder, in order to further reduce the impact of transmission failures. We show that fixed-lag smoothing up to a certain delay can be obtained without additional computational complexity by exploiting the state-space structure. We prove that the proposed smoothing strategy strictly improves performance under quite general conditions. Finally, we provide simulations on AR sources, and channels with correlated losses, and show that substantial improvements are possible.\",\"PeriodicalId\":299459,\"journal\":{\"name\":\"2010 Data Compression Conference\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2010.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2010.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑线性预测编码和噪声整形的编码和传输自回归(AR)源在有损网络。我们将现有的框架推广到任意阶滤波器,并提出在解码器处使用固定滞后平滑,以进一步减少传输故障的影响。我们表明,利用状态空间结构,可以在不增加计算复杂度的情况下获得固定滞后平滑到一定延迟。我们证明了所提出的平滑策略在相当一般的条件下严格提高了性能。最后,我们提供了AR源和具有相关损耗的通道的模拟,并表明实质性的改进是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fixed-Lag Smoothing for Low-Delay Predictive Coding with Noise Shaping for Lossy Networks
We consider linear predictive coding and noise shaping for coding and transmission of auto-regressive (AR) sources over lossy networks. We generalize an existing framework to arbitrary filter orders and propose use of fixed-lag smoothing at the decoder, in order to further reduce the impact of transmission failures. We show that fixed-lag smoothing up to a certain delay can be obtained without additional computational complexity by exploiting the state-space structure. We prove that the proposed smoothing strategy strictly improves performance under quite general conditions. Finally, we provide simulations on AR sources, and channels with correlated losses, and show that substantial improvements are possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shape Recognition Using Vector Quantization Lossless Reduced Cutset Coding of Markov Random Fields Optimized Analog Mappings for Distributed Source-Channel Coding An MCMC Approach to Lossy Compression of Continuous Sources Lossless Compression of Mapped Domain Linear Prediction Residual for ITU-T Recommendation G.711.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1