使用运行时强制测试实时嵌入式软件

Louis-Marie Givel, Jean-Luc Béchennec, M. Brun, S. Faucou, O. Roux
{"title":"使用运行时强制测试实时嵌入式软件","authors":"Louis-Marie Givel, Jean-Luc Béchennec, M. Brun, S. Faucou, O. Roux","doi":"10.1109/SIES.2016.7509430","DOIUrl":null,"url":null,"abstract":"Real-time embedded systems are complex, and as such need to be tested with regards to real-time constraints. However, because of this complexity, some states of the systems can be hard to reach through acting on the input sequence alone, because of seemingly non-deterministic behaviors. In this paper, we introduce a solution based on runtime enforcement which forces a real-time system to reach a chosen state. This can allow for testing of the consequences of reaching this state for the system. Let us consider for example a fault tolerance mechanism that activates when a state of the system is reached. Our solution makes it possible to force the system to consistently reach the state in which the fault tolerance mechanism is started. The solution is based on both an offline analysis and a runtime enforcement step which uses the result of the offline analysis. The runtime enforcement is achieved through the introduction of delays during the execution of the system.","PeriodicalId":185636,"journal":{"name":"2016 11th IEEE Symposium on Industrial Embedded Systems (SIES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Testing real-time embedded software using runtime enforcement\",\"authors\":\"Louis-Marie Givel, Jean-Luc Béchennec, M. Brun, S. Faucou, O. Roux\",\"doi\":\"10.1109/SIES.2016.7509430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time embedded systems are complex, and as such need to be tested with regards to real-time constraints. However, because of this complexity, some states of the systems can be hard to reach through acting on the input sequence alone, because of seemingly non-deterministic behaviors. In this paper, we introduce a solution based on runtime enforcement which forces a real-time system to reach a chosen state. This can allow for testing of the consequences of reaching this state for the system. Let us consider for example a fault tolerance mechanism that activates when a state of the system is reached. Our solution makes it possible to force the system to consistently reach the state in which the fault tolerance mechanism is started. The solution is based on both an offline analysis and a runtime enforcement step which uses the result of the offline analysis. The runtime enforcement is achieved through the introduction of delays during the execution of the system.\",\"PeriodicalId\":185636,\"journal\":{\"name\":\"2016 11th IEEE Symposium on Industrial Embedded Systems (SIES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 11th IEEE Symposium on Industrial Embedded Systems (SIES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIES.2016.7509430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th IEEE Symposium on Industrial Embedded Systems (SIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIES.2016.7509430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

实时嵌入式系统是复杂的,因此需要根据实时约束进行测试。然而,由于这种复杂性,由于看似不确定的行为,系统的某些状态很难通过单独作用于输入序列来达到。在本文中,我们介绍了一种基于运行时强制的解决方案,它可以强制实时系统达到选定的状态。这样就可以测试系统达到这种状态后的结果。例如,让我们考虑一种容错机制,它在系统达到某种状态时激活。我们的解决方案使得强制系统一致地达到启动容错机制的状态成为可能。该解决方案基于脱机分析和使用脱机分析结果的运行时执行步骤。运行时强制是通过在系统执行期间引入延迟来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Testing real-time embedded software using runtime enforcement
Real-time embedded systems are complex, and as such need to be tested with regards to real-time constraints. However, because of this complexity, some states of the systems can be hard to reach through acting on the input sequence alone, because of seemingly non-deterministic behaviors. In this paper, we introduce a solution based on runtime enforcement which forces a real-time system to reach a chosen state. This can allow for testing of the consequences of reaching this state for the system. Let us consider for example a fault tolerance mechanism that activates when a state of the system is reached. Our solution makes it possible to force the system to consistently reach the state in which the fault tolerance mechanism is started. The solution is based on both an offline analysis and a runtime enforcement step which uses the result of the offline analysis. The runtime enforcement is achieved through the introduction of delays during the execution of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Communication aware multiprocessor binding for shared memory systems Efficient algorithms for memory management in embedded vision systems Static probabilistic timing analysis in presence of faults Conformance checking for programmable logic controller programs and specifications Minimizing stack usage for AUTOSAR/OSEK's restricted fixed-priority preemption threshold support
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1