用于训练机器辅助视觉分析中鲁棒深度学习模型的高分辨率遥感图像基准元数据集

J. A. Hurt, G. Scott, Derek T. Anderson, C. Davis
{"title":"用于训练机器辅助视觉分析中鲁棒深度学习模型的高分辨率遥感图像基准元数据集","authors":"J. A. Hurt, G. Scott, Derek T. Anderson, C. Davis","doi":"10.1109/AIPR.2018.8707433","DOIUrl":null,"url":null,"abstract":"Recent years have seen the publication of various high-resolution remote sensing imagery benchmark datasets. These datasets, while diverse in design, have many co-occurring object classes that are of interest for various application domains of Earth observation. In this research, we present our evaluation of a new meta-benchmark dataset combining object classes from the UC Merced, WHU-RS19, PatternNet, and RESISC-45 benchmark datasets. We provide open-source resources to acquire the individual benchmark datasets and then agglomerate them into a new meta-dataset (MDS). Prior research has shown that contemporary deep convolutional neural networks are able to achieve cross-validation accuracies in the range of 95-100% for the 33 identified object classes. Our analysis shows that the overall accuracy for all object classes from these benchmarks is approximately 98.6%. In this work, we investigate the utility of agglomerating the benchmarks into an MDS to train more generalizable, and therefore translatable from lab to real-world, deep machine learning (DML) models. We evaluate numerous state-of-the-art architectures, as well as our data-driven DML model fusion techniques. Finally, we compare MDS performance with that of the benchmark datasets to evaluate the performance versus cost trade-off of using multiple DML in an ensemble system.","PeriodicalId":230582,"journal":{"name":"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Benchmark Meta-Dataset of High-Resolution Remote Sensing Imagery for Training Robust Deep Learning Models in Machine-Assisted Visual Analytics\",\"authors\":\"J. A. Hurt, G. Scott, Derek T. Anderson, C. Davis\",\"doi\":\"10.1109/AIPR.2018.8707433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have seen the publication of various high-resolution remote sensing imagery benchmark datasets. These datasets, while diverse in design, have many co-occurring object classes that are of interest for various application domains of Earth observation. In this research, we present our evaluation of a new meta-benchmark dataset combining object classes from the UC Merced, WHU-RS19, PatternNet, and RESISC-45 benchmark datasets. We provide open-source resources to acquire the individual benchmark datasets and then agglomerate them into a new meta-dataset (MDS). Prior research has shown that contemporary deep convolutional neural networks are able to achieve cross-validation accuracies in the range of 95-100% for the 33 identified object classes. Our analysis shows that the overall accuracy for all object classes from these benchmarks is approximately 98.6%. In this work, we investigate the utility of agglomerating the benchmarks into an MDS to train more generalizable, and therefore translatable from lab to real-world, deep machine learning (DML) models. We evaluate numerous state-of-the-art architectures, as well as our data-driven DML model fusion techniques. Finally, we compare MDS performance with that of the benchmark datasets to evaluate the performance versus cost trade-off of using multiple DML in an ensemble system.\",\"PeriodicalId\":230582,\"journal\":{\"name\":\"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2018.8707433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2018.8707433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

近年来出版了各种高分辨率遥感图像基准数据集。这些数据集虽然设计多样,但有许多共同发生的对象类,这些对象类对地球观测的各种应用领域都很感兴趣。在这项研究中,我们展示了我们对一个新的元基准数据集的评估,该数据集结合了来自UC Merced、WHU-RS19、PatternNet和RESISC-45基准数据集的对象类。我们提供开源资源来获取单个基准数据集,然后将它们聚合成一个新的元数据集(MDS)。先前的研究表明,当代深度卷积神经网络能够在33个已识别的对象类别中实现95-100%的交叉验证精度。我们的分析表明,这些基准测试中所有对象类的总体准确率约为98.6%。在这项工作中,我们研究了将基准聚合到MDS中的效用,以训练更一般化的,因此可以从实验室转换到现实世界的深度机器学习(DML)模型。我们评估了许多最先进的架构,以及我们的数据驱动的DML模型融合技术。最后,我们将MDS性能与基准数据集的性能进行比较,以评估在集成系统中使用多个DML的性能与成本权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Benchmark Meta-Dataset of High-Resolution Remote Sensing Imagery for Training Robust Deep Learning Models in Machine-Assisted Visual Analytics
Recent years have seen the publication of various high-resolution remote sensing imagery benchmark datasets. These datasets, while diverse in design, have many co-occurring object classes that are of interest for various application domains of Earth observation. In this research, we present our evaluation of a new meta-benchmark dataset combining object classes from the UC Merced, WHU-RS19, PatternNet, and RESISC-45 benchmark datasets. We provide open-source resources to acquire the individual benchmark datasets and then agglomerate them into a new meta-dataset (MDS). Prior research has shown that contemporary deep convolutional neural networks are able to achieve cross-validation accuracies in the range of 95-100% for the 33 identified object classes. Our analysis shows that the overall accuracy for all object classes from these benchmarks is approximately 98.6%. In this work, we investigate the utility of agglomerating the benchmarks into an MDS to train more generalizable, and therefore translatable from lab to real-world, deep machine learning (DML) models. We evaluate numerous state-of-the-art architectures, as well as our data-driven DML model fusion techniques. Finally, we compare MDS performance with that of the benchmark datasets to evaluate the performance versus cost trade-off of using multiple DML in an ensemble system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Annotation of Satellite Imagery using Model-based Projections Visualizing Compression of Deep Learning Models for Classification Malware Classification using Deep Convolutional Neural Networks An Improved Star Detection Algorithm Using a Combination of Statistical and Morphological Image Processing Techniques Improving Nuclei Classification Performance in H&E Stained Tissue Images Using Fully Convolutional Regression Network and Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1