半导体晶圆的激光刻槽:简化数值方法与实验的比较

M. van Soestbergen, J. Zaal, F. Swartjes, J. Janssen
{"title":"半导体晶圆的激光刻槽:简化数值方法与实验的比较","authors":"M. van Soestbergen, J. Zaal, F. Swartjes, J. Janssen","doi":"10.1109/EUROSIME.2015.7103120","DOIUrl":null,"url":null,"abstract":"Laser grooving is used for the singulation of advanced CMOS wafers since it is believed that it exerts lower mechanical stress than traditional blade dicing. The very local heating of wafers, however, might result in high thermal stress around the heat affected zone. In this work we present a model to predict the temperature distribution, material removal, and the resulting stress, in a sandwiched structure of metals and dielectric materials that are commonly found in the back-end of line of semiconductor wafers. Simulation results on realistic three dimensional back-end structures reveal that the presence of metals clearly affects both the ablation depth, and the stress in the material. Experiments showed a similar observation for the ablation depth. The shape of the crater, however, was found to be more uniform than predicted by simulations, which is probably due to the redistribution of molten metal.","PeriodicalId":250897,"journal":{"name":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Laser grooving of semiconductor wafers: Comparing a simplified numerical approach with experiments\",\"authors\":\"M. van Soestbergen, J. Zaal, F. Swartjes, J. Janssen\",\"doi\":\"10.1109/EUROSIME.2015.7103120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser grooving is used for the singulation of advanced CMOS wafers since it is believed that it exerts lower mechanical stress than traditional blade dicing. The very local heating of wafers, however, might result in high thermal stress around the heat affected zone. In this work we present a model to predict the temperature distribution, material removal, and the resulting stress, in a sandwiched structure of metals and dielectric materials that are commonly found in the back-end of line of semiconductor wafers. Simulation results on realistic three dimensional back-end structures reveal that the presence of metals clearly affects both the ablation depth, and the stress in the material. Experiments showed a similar observation for the ablation depth. The shape of the crater, however, was found to be more uniform than predicted by simulations, which is probably due to the redistribution of molten metal.\",\"PeriodicalId\":250897,\"journal\":{\"name\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROSIME.2015.7103120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2015.7103120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

激光开槽被用于先进的CMOS晶圆的模拟,因为它被认为比传统的刀片切割产生更低的机械应力。然而,晶圆片的局部加热可能导致热影响区周围的高热应力。在这项工作中,我们提出了一个模型来预测半导体晶圆生产线后端常见的金属和介电材料夹层结构中的温度分布、材料去除和由此产生的应力。对真实三维后端结构的模拟结果表明,金属的存在对烧蚀深度和材料应力都有明显的影响。烧蚀深度的实验结果与此类似。然而,陨石坑的形状被发现比模拟预测的更加均匀,这可能是由于熔融金属的重新分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser grooving of semiconductor wafers: Comparing a simplified numerical approach with experiments
Laser grooving is used for the singulation of advanced CMOS wafers since it is believed that it exerts lower mechanical stress than traditional blade dicing. The very local heating of wafers, however, might result in high thermal stress around the heat affected zone. In this work we present a model to predict the temperature distribution, material removal, and the resulting stress, in a sandwiched structure of metals and dielectric materials that are commonly found in the back-end of line of semiconductor wafers. Simulation results on realistic three dimensional back-end structures reveal that the presence of metals clearly affects both the ablation depth, and the stress in the material. Experiments showed a similar observation for the ablation depth. The shape of the crater, however, was found to be more uniform than predicted by simulations, which is probably due to the redistribution of molten metal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient simulation of thermo-mechanical stress in the on-chip metallization of power semiconductors Simulation driven design of novel integrated circuits - Part 1: Selection of the materials based on the Virtual DoE Applications of computational mechanics in stretchable electronics Prediction of package delamination based on μMMT and BST experiments Simulation of a flip chip bonding technique using reactive foils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1