极端波中运动和变形物体的计算方法

A. Veldman, H. Seubers, Matin Hosseini, X. Chang, P. Wellens, P. V. D. Plas, J. Helder
{"title":"极端波中运动和变形物体的计算方法","authors":"A. Veldman, H. Seubers, Matin Hosseini, X. Chang, P. Wellens, P. V. D. Plas, J. Helder","doi":"10.1115/omae2019-96321","DOIUrl":null,"url":null,"abstract":"\n Wave forces can form a serious threat to offshore platforms and ships. The damage produced by these forces of nature jeopardizes their operability as well as the well-being of their crews. Similar remarks apply to coastal defense systems. To develop the knowledge needed to safely design these constructions, in close cooperation with MARIN and the offshore industry the numerical simulation method ComFLOW is being developed. So far, its development was focussed on predicting wave loads (green water, slamming) on fixed structures, and for those applications the method is already being used successfully by the offshore industry. Often, the investigated object (ship, floating platform) is dynamically moving under the influence of these wave forces, and its hydrodynamic loading depends upon the position of the object with respect to the oncoming waves. Predicting the position (and deformation) of the body is an integral part of the (scientific and engineering) problem. The paper will give an overview of the algorithmic developments necessary to describe the above-mentioned physical phenomena. In particular attention will be paid to fluid-solid body and fluid-structure interaction and non-reflecting outflow boundary conditions. Several illustrations including validation, will demonstrate the prediction capabilities of the simulation method.","PeriodicalId":345141,"journal":{"name":"Volume 2: CFD and FSI","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Methods for Moving and Deforming Objects in Extreme Waves\",\"authors\":\"A. Veldman, H. Seubers, Matin Hosseini, X. Chang, P. Wellens, P. V. D. Plas, J. Helder\",\"doi\":\"10.1115/omae2019-96321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Wave forces can form a serious threat to offshore platforms and ships. The damage produced by these forces of nature jeopardizes their operability as well as the well-being of their crews. Similar remarks apply to coastal defense systems. To develop the knowledge needed to safely design these constructions, in close cooperation with MARIN and the offshore industry the numerical simulation method ComFLOW is being developed. So far, its development was focussed on predicting wave loads (green water, slamming) on fixed structures, and for those applications the method is already being used successfully by the offshore industry. Often, the investigated object (ship, floating platform) is dynamically moving under the influence of these wave forces, and its hydrodynamic loading depends upon the position of the object with respect to the oncoming waves. Predicting the position (and deformation) of the body is an integral part of the (scientific and engineering) problem. The paper will give an overview of the algorithmic developments necessary to describe the above-mentioned physical phenomena. In particular attention will be paid to fluid-solid body and fluid-structure interaction and non-reflecting outflow boundary conditions. Several illustrations including validation, will demonstrate the prediction capabilities of the simulation method.\",\"PeriodicalId\":345141,\"journal\":{\"name\":\"Volume 2: CFD and FSI\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: CFD and FSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-96321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: CFD and FSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-96321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

波浪力会对海上平台和船只构成严重威胁。这些自然力量所造成的破坏危及它们的可操作性以及船员的福祉。类似的言论也适用于海岸防御系统。为了开发安全设计这些结构所需的知识,与MARIN和海上工业密切合作,正在开发数值模拟方法ComFLOW。到目前为止,它的开发主要集中在预测固定结构上的波浪载荷(绿水,撞击),对于这些应用,该方法已经在海上工业中成功应用。通常,所研究的物体(船舶、浮动平台)在这些波浪力的影响下动态移动,其流体动力载荷取决于物体相对于迎面而来的波浪的位置。预测物体的位置(和变形)是(科学和工程)问题的一个组成部分。本文将概述描述上述物理现象所必需的算法发展。将特别注意流固体和流固相互作用以及非反射流出边界条件。包括验证在内的几个示例将演示仿真方法的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational Methods for Moving and Deforming Objects in Extreme Waves
Wave forces can form a serious threat to offshore platforms and ships. The damage produced by these forces of nature jeopardizes their operability as well as the well-being of their crews. Similar remarks apply to coastal defense systems. To develop the knowledge needed to safely design these constructions, in close cooperation with MARIN and the offshore industry the numerical simulation method ComFLOW is being developed. So far, its development was focussed on predicting wave loads (green water, slamming) on fixed structures, and for those applications the method is already being used successfully by the offshore industry. Often, the investigated object (ship, floating platform) is dynamically moving under the influence of these wave forces, and its hydrodynamic loading depends upon the position of the object with respect to the oncoming waves. Predicting the position (and deformation) of the body is an integral part of the (scientific and engineering) problem. The paper will give an overview of the algorithmic developments necessary to describe the above-mentioned physical phenomena. In particular attention will be paid to fluid-solid body and fluid-structure interaction and non-reflecting outflow boundary conditions. Several illustrations including validation, will demonstrate the prediction capabilities of the simulation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development and Validation of CFD Analysis Procedure for Predicting Wind Load on Commercial Ships Multi-Phase Simulation of Droplet Trajectories of Wave-Impact Sea Spray Over a Vessel Numerical Study of Breaking Waves and Associated Wave Forces on a Jacket Substructure for Offshore Wind Turbines Numerical Simulation of Trim Optimization on Resistance Performance Based on CFD Method Fundamental CFD Study on the Hydrodynamic Performance of the DARPA SUBOFF Submarine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1