Donnaphat Trakulwaranont, Marc A. Kastner, S. Satoh
{"title":"姿势意识的服装转换之间的不成对的野生时尚图像","authors":"Donnaphat Trakulwaranont, Marc A. Kastner, S. Satoh","doi":"10.1145/3469877.3490569","DOIUrl":null,"url":null,"abstract":"Virtual try-on systems became popular for visualizing outfits, due to the importance of individual fashion in many communities. The objective of such a system is to transfer a piece of clothing to another person while preserving its detail and characteristics. To generate a realistic in-the-wild image, it needs visual optimization of the clothing, background and target person, making this task still very challenging. In this paper, we develop a method that generates realistic try-on images with unpaired images from in-the-wild datasets. Our proposed method starts with generating a mock-up paired image using geometric transfer. Then, the target’s pose information is adjusted using a modified pose-attention module. We combine a reconstruction and a content loss to preserve the detail and style of the transferred clothing, background and the target person. We evaluate the approach on the Fashionpedia dataset and can show a promising performance over a baseline approach.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pose-aware Outfit Transfer between Unpaired in-the-wild Fashion Images\",\"authors\":\"Donnaphat Trakulwaranont, Marc A. Kastner, S. Satoh\",\"doi\":\"10.1145/3469877.3490569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual try-on systems became popular for visualizing outfits, due to the importance of individual fashion in many communities. The objective of such a system is to transfer a piece of clothing to another person while preserving its detail and characteristics. To generate a realistic in-the-wild image, it needs visual optimization of the clothing, background and target person, making this task still very challenging. In this paper, we develop a method that generates realistic try-on images with unpaired images from in-the-wild datasets. Our proposed method starts with generating a mock-up paired image using geometric transfer. Then, the target’s pose information is adjusted using a modified pose-attention module. We combine a reconstruction and a content loss to preserve the detail and style of the transferred clothing, background and the target person. We evaluate the approach on the Fashionpedia dataset and can show a promising performance over a baseline approach.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3490569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pose-aware Outfit Transfer between Unpaired in-the-wild Fashion Images
Virtual try-on systems became popular for visualizing outfits, due to the importance of individual fashion in many communities. The objective of such a system is to transfer a piece of clothing to another person while preserving its detail and characteristics. To generate a realistic in-the-wild image, it needs visual optimization of the clothing, background and target person, making this task still very challenging. In this paper, we develop a method that generates realistic try-on images with unpaired images from in-the-wild datasets. Our proposed method starts with generating a mock-up paired image using geometric transfer. Then, the target’s pose information is adjusted using a modified pose-attention module. We combine a reconstruction and a content loss to preserve the detail and style of the transferred clothing, background and the target person. We evaluate the approach on the Fashionpedia dataset and can show a promising performance over a baseline approach.