姿势意识的服装转换之间的不成对的野生时尚图像

Donnaphat Trakulwaranont, Marc A. Kastner, S. Satoh
{"title":"姿势意识的服装转换之间的不成对的野生时尚图像","authors":"Donnaphat Trakulwaranont, Marc A. Kastner, S. Satoh","doi":"10.1145/3469877.3490569","DOIUrl":null,"url":null,"abstract":"Virtual try-on systems became popular for visualizing outfits, due to the importance of individual fashion in many communities. The objective of such a system is to transfer a piece of clothing to another person while preserving its detail and characteristics. To generate a realistic in-the-wild image, it needs visual optimization of the clothing, background and target person, making this task still very challenging. In this paper, we develop a method that generates realistic try-on images with unpaired images from in-the-wild datasets. Our proposed method starts with generating a mock-up paired image using geometric transfer. Then, the target’s pose information is adjusted using a modified pose-attention module. We combine a reconstruction and a content loss to preserve the detail and style of the transferred clothing, background and the target person. We evaluate the approach on the Fashionpedia dataset and can show a promising performance over a baseline approach.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pose-aware Outfit Transfer between Unpaired in-the-wild Fashion Images\",\"authors\":\"Donnaphat Trakulwaranont, Marc A. Kastner, S. Satoh\",\"doi\":\"10.1145/3469877.3490569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual try-on systems became popular for visualizing outfits, due to the importance of individual fashion in many communities. The objective of such a system is to transfer a piece of clothing to another person while preserving its detail and characteristics. To generate a realistic in-the-wild image, it needs visual optimization of the clothing, background and target person, making this task still very challenging. In this paper, we develop a method that generates realistic try-on images with unpaired images from in-the-wild datasets. Our proposed method starts with generating a mock-up paired image using geometric transfer. Then, the target’s pose information is adjusted using a modified pose-attention module. We combine a reconstruction and a content loss to preserve the detail and style of the transferred clothing, background and the target person. We evaluate the approach on the Fashionpedia dataset and can show a promising performance over a baseline approach.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3490569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于个人时尚在许多社区的重要性,虚拟试穿系统在服装可视化方面变得流行起来。这种系统的目标是将一件衣服转移给另一个人,同时保留其细节和特征。为了生成逼真的野外图像,需要对服装,背景和目标人物进行视觉优化,这使得这项任务仍然非常具有挑战性。在本文中,我们开发了一种方法,可以使用来自野外数据集的未配对图像生成逼真的试穿图像。我们提出的方法首先使用几何转移生成模型配对图像。然后,使用改进的姿态-注意模块调整目标的姿态信息。我们将重建和内容丢失相结合,以保留转移的服装,背景和目标人物的细节和风格。我们在Fashionpedia数据集上评估了该方法,并且可以显示出比基线方法更有希望的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pose-aware Outfit Transfer between Unpaired in-the-wild Fashion Images
Virtual try-on systems became popular for visualizing outfits, due to the importance of individual fashion in many communities. The objective of such a system is to transfer a piece of clothing to another person while preserving its detail and characteristics. To generate a realistic in-the-wild image, it needs visual optimization of the clothing, background and target person, making this task still very challenging. In this paper, we develop a method that generates realistic try-on images with unpaired images from in-the-wild datasets. Our proposed method starts with generating a mock-up paired image using geometric transfer. Then, the target’s pose information is adjusted using a modified pose-attention module. We combine a reconstruction and a content loss to preserve the detail and style of the transferred clothing, background and the target person. We evaluate the approach on the Fashionpedia dataset and can show a promising performance over a baseline approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1