失配应变弛豫对NdGaO3外延(Ba0.60 Sr0.40)薄膜非线性介电性能的影响

W. Simon, E. K. Akdoğan, A. Safari
{"title":"失配应变弛豫对NdGaO3外延(Ba0.60 Sr0.40)薄膜非线性介电性能的影响","authors":"W. Simon, E. K. Akdoğan, A. Safari","doi":"10.1109/ISAF.2006.4387836","DOIUrl":null,"url":null,"abstract":"Strain relaxation in (Ba0.60 Sr0.40)TiO3 epitaxial films on <110>-oriented NdGaO3 substrates is investigated in the thickness range, h= 25-1200 nm. The BST films prepared by PLD show that residual strains mostly relax by h~200 nm, and for h>600 nm films are essentially strain free. Two independent dislocation mechanisms operate to relax anisotropic strains along the principal directions. The critical thickness for misfit dislocation formation along [001] and [010] were found to be 11 and 15 nm, respectively. Deviation from linear elasticity for h<200 was observed, and increased as thickness decreased. Films with h<25 nm are monoclinic due to a finite principal shear stress along [110] of the BST cell. The effects of misfit strain relaxation on the nonlinear dielectric response and tunability will be discussed as well. The in plane dielectric response demonstrates a directional dependence that increases with the magnitude of the residual strain.","PeriodicalId":441219,"journal":{"name":"2006 15th ieee international symposium on the applications of ferroelectrics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Misfit Strain Relaxation on Nonlinear Dielectric Properties of Epitaxial (Ba0.60 Sr0.40) Thin Films on NdGaO3\",\"authors\":\"W. Simon, E. K. Akdoğan, A. Safari\",\"doi\":\"10.1109/ISAF.2006.4387836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Strain relaxation in (Ba0.60 Sr0.40)TiO3 epitaxial films on <110>-oriented NdGaO3 substrates is investigated in the thickness range, h= 25-1200 nm. The BST films prepared by PLD show that residual strains mostly relax by h~200 nm, and for h>600 nm films are essentially strain free. Two independent dislocation mechanisms operate to relax anisotropic strains along the principal directions. The critical thickness for misfit dislocation formation along [001] and [010] were found to be 11 and 15 nm, respectively. Deviation from linear elasticity for h<200 was observed, and increased as thickness decreased. Films with h<25 nm are monoclinic due to a finite principal shear stress along [110] of the BST cell. The effects of misfit strain relaxation on the nonlinear dielectric response and tunability will be discussed as well. The in plane dielectric response demonstrates a directional dependence that increases with the magnitude of the residual strain.\",\"PeriodicalId\":441219,\"journal\":{\"name\":\"2006 15th ieee international symposium on the applications of ferroelectrics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 15th ieee international symposium on the applications of ferroelectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAF.2006.4387836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 15th ieee international symposium on the applications of ferroelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAF.2006.4387836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了(Ba0.60 Sr0.40)TiO3外延薄膜在定向nd高岭土衬底上的应变弛豫,厚度范围为25 ~ 1200 nm。PLD制备的BST薄膜的残余应变主要在h~200 nm范围内松弛,而在h>600 nm范围内基本没有应变。两个独立的位错机制使各向异性应变沿主方向松弛。沿[001]和[010]形成错配位错的临界厚度分别为11 nm和15 nm。当h<200时,与线弹性的偏差随着厚度的减小而增大。由于沿BST细胞[110]的主剪应力有限,h<25 nm的薄膜是单斜的。本文还讨论了非拟合应变松弛对非线性介质响应和可调性的影响。平面内介电响应表现出随残余应变的大小而增加的方向依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Misfit Strain Relaxation on Nonlinear Dielectric Properties of Epitaxial (Ba0.60 Sr0.40) Thin Films on NdGaO3
Strain relaxation in (Ba0.60 Sr0.40)TiO3 epitaxial films on <110>-oriented NdGaO3 substrates is investigated in the thickness range, h= 25-1200 nm. The BST films prepared by PLD show that residual strains mostly relax by h~200 nm, and for h>600 nm films are essentially strain free. Two independent dislocation mechanisms operate to relax anisotropic strains along the principal directions. The critical thickness for misfit dislocation formation along [001] and [010] were found to be 11 and 15 nm, respectively. Deviation from linear elasticity for h<200 was observed, and increased as thickness decreased. Films with h<25 nm are monoclinic due to a finite principal shear stress along [110] of the BST cell. The effects of misfit strain relaxation on the nonlinear dielectric response and tunability will be discussed as well. The in plane dielectric response demonstrates a directional dependence that increases with the magnitude of the residual strain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dielectric Behavior of PFW-PT Relaxors: Model-Parameters Extraction Synthesis, Structure and Properties of Pulsed Laser Deposited BiFeO3-PbTiO3 Thin Films Application of Dielectric, Ferroelectric and Piezoelectric Thin Film Devices in Mobile Communication and Medical Systems Relaxor Ferroelectric 0.2PZN-0.8PZT(53/47) Thick Films Fabricated Using a MOD Process Fabrication and Characterization of ZnO Films for Biological Sensor Application of FPW Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1