联合标签细化和混合记忆对比学习用于无监督海洋物体再识别

Xiaorui Han, Zhiqi Chen, Ruixue Wang, Pengfei Zhao
{"title":"联合标签细化和混合记忆对比学习用于无监督海洋物体再识别","authors":"Xiaorui Han, Zhiqi Chen, Ruixue Wang, Pengfei Zhao","doi":"10.1145/3469877.3497695","DOIUrl":null,"url":null,"abstract":"Unsupervised object re-identification is a challenging task due to the missing of labels for the dataset. Many unsupervised object re-identification approaches combine clustering-based pseudo-label prediction with feature fine-tuning. These methods have achieved great success in the field of unsupervised object Re-ID. However, the inevitable label noise caused by the clustering procedure was ignored. Such noisy pseudo labels substantially hinder the model’s capability on further improving feature representations. To this end, we propose a novel joint label refinement and contrastive learning framework with hybrid memory to alleviate this problem. Firstly, in order to reduce the noise of clustering pseudo labels, we propose a novel noise refinement strategy. This strategy refines pseudo labels at clustering phase and promotes clustering quality by boosting the label purity. In addition, we propose a hybrid memory bank. The hybrid memory dynamically generates prototype-level and un-clustered instance-level supervisory signals for learning feature representations. With all prototype-level and un-clustered instance-level supervisions, re-identification model is trained progressively. Our proposed unsupervised object Re-ID framework significantly reduces the influence of noisy labels and refines the learned features. Our method consistently achieves state-of-the-art performance on benchmark datasets.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Joint label refinement and contrastive learning with hybrid memory for Unsupervised Marine Object Re-Identification\",\"authors\":\"Xiaorui Han, Zhiqi Chen, Ruixue Wang, Pengfei Zhao\",\"doi\":\"10.1145/3469877.3497695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised object re-identification is a challenging task due to the missing of labels for the dataset. Many unsupervised object re-identification approaches combine clustering-based pseudo-label prediction with feature fine-tuning. These methods have achieved great success in the field of unsupervised object Re-ID. However, the inevitable label noise caused by the clustering procedure was ignored. Such noisy pseudo labels substantially hinder the model’s capability on further improving feature representations. To this end, we propose a novel joint label refinement and contrastive learning framework with hybrid memory to alleviate this problem. Firstly, in order to reduce the noise of clustering pseudo labels, we propose a novel noise refinement strategy. This strategy refines pseudo labels at clustering phase and promotes clustering quality by boosting the label purity. In addition, we propose a hybrid memory bank. The hybrid memory dynamically generates prototype-level and un-clustered instance-level supervisory signals for learning feature representations. With all prototype-level and un-clustered instance-level supervisions, re-identification model is trained progressively. Our proposed unsupervised object Re-ID framework significantly reduces the influence of noisy labels and refines the learned features. Our method consistently achieves state-of-the-art performance on benchmark datasets.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3497695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3497695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于数据集缺少标签,无监督对象重新识别是一项具有挑战性的任务。许多无监督目标再识别方法将基于聚类的伪标签预测与特征微调相结合。这些方法在无监督对象Re-ID领域取得了很大的成功。然而,聚类过程中不可避免的标签噪声被忽略了。这种有噪声的伪标签实质上阻碍了模型进一步改进特征表示的能力。为此,我们提出了一种新的带有混合记忆的联合标签细化和对比学习框架来缓解这一问题。首先,为了降低聚类伪标签的噪声,提出了一种新的噪声细化策略。该策略在聚类阶段细化伪标签,并通过提高标签纯度来提高聚类质量。此外,我们还提出了一种混合记忆库。混合存储器动态生成原型级和非聚类实例级监视信号,用于学习特征表示。在原型级和非聚类实例级监督下,逐步训练再识别模型。我们提出的无监督对象Re-ID框架显著降低了噪声标签的影响,并改进了学习到的特征。我们的方法始终在基准数据集上实现最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint label refinement and contrastive learning with hybrid memory for Unsupervised Marine Object Re-Identification
Unsupervised object re-identification is a challenging task due to the missing of labels for the dataset. Many unsupervised object re-identification approaches combine clustering-based pseudo-label prediction with feature fine-tuning. These methods have achieved great success in the field of unsupervised object Re-ID. However, the inevitable label noise caused by the clustering procedure was ignored. Such noisy pseudo labels substantially hinder the model’s capability on further improving feature representations. To this end, we propose a novel joint label refinement and contrastive learning framework with hybrid memory to alleviate this problem. Firstly, in order to reduce the noise of clustering pseudo labels, we propose a novel noise refinement strategy. This strategy refines pseudo labels at clustering phase and promotes clustering quality by boosting the label purity. In addition, we propose a hybrid memory bank. The hybrid memory dynamically generates prototype-level and un-clustered instance-level supervisory signals for learning feature representations. With all prototype-level and un-clustered instance-level supervisions, re-identification model is trained progressively. Our proposed unsupervised object Re-ID framework significantly reduces the influence of noisy labels and refines the learned features. Our method consistently achieves state-of-the-art performance on benchmark datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1