分组梯度裁剪的差异私有学习

Haolin Liu, Chenyu Li, Bochao Liu, Pengju Wang, Shiming Ge, Weiping Wang
{"title":"分组梯度裁剪的差异私有学习","authors":"Haolin Liu, Chenyu Li, Bochao Liu, Pengju Wang, Shiming Ge, Weiping Wang","doi":"10.1145/3469877.3490594","DOIUrl":null,"url":null,"abstract":"While deep learning has proved success in many critical tasks by training models from large-scale data, some private information within can be recovered from the released models, leading to the leakage of privacy. To address this problem, this paper presents a differentially private deep learning paradigm to train private models. In the approach, we propose and incorporate a simple operation termed grouped gradient clipping to modulate the gradient weights. We also incorporated the smooth sensitivity mechanism into differentially private deep learning paradigm, which bounds the adding Gaussian noise. In this way, the resulting model can simultaneously provide with strong privacy protection and avoid accuracy degradation, providing a good trade-off between privacy and performance. The theoretic advantages of grouped gradient clipping are well analyzed. Extensive evaluations on popular benchmarks and comparisons with 11 state-of-the-arts clearly demonstrate the effectiveness and genearalizability of our approach.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Differentially Private Learning with Grouped Gradient Clipping\",\"authors\":\"Haolin Liu, Chenyu Li, Bochao Liu, Pengju Wang, Shiming Ge, Weiping Wang\",\"doi\":\"10.1145/3469877.3490594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While deep learning has proved success in many critical tasks by training models from large-scale data, some private information within can be recovered from the released models, leading to the leakage of privacy. To address this problem, this paper presents a differentially private deep learning paradigm to train private models. In the approach, we propose and incorporate a simple operation termed grouped gradient clipping to modulate the gradient weights. We also incorporated the smooth sensitivity mechanism into differentially private deep learning paradigm, which bounds the adding Gaussian noise. In this way, the resulting model can simultaneously provide with strong privacy protection and avoid accuracy degradation, providing a good trade-off between privacy and performance. The theoretic advantages of grouped gradient clipping are well analyzed. Extensive evaluations on popular benchmarks and comparisons with 11 state-of-the-arts clearly demonstrate the effectiveness and genearalizability of our approach.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3490594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

虽然深度学习通过从大规模数据中训练模型在许多关键任务中被证明是成功的,但其中的一些私有信息可以从发布的模型中恢复,从而导致隐私泄露。为了解决这个问题,本文提出了一种差分私有深度学习范式来训练私有模型。在该方法中,我们提出并结合了一种简单的操作,称为分组梯度裁剪来调制梯度权重。我们还将平滑灵敏度机制纳入差分私有深度学习范式,该范式限制了高斯噪声的添加。这样,得到的模型可以同时提供强大的隐私保护和避免准确性下降,在隐私和性能之间提供了很好的权衡。分析了分组梯度裁剪的理论优势。对流行基准的广泛评价和与11项最先进技术的比较清楚地表明我们的方法的有效性和普遍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differentially Private Learning with Grouped Gradient Clipping
While deep learning has proved success in many critical tasks by training models from large-scale data, some private information within can be recovered from the released models, leading to the leakage of privacy. To address this problem, this paper presents a differentially private deep learning paradigm to train private models. In the approach, we propose and incorporate a simple operation termed grouped gradient clipping to modulate the gradient weights. We also incorporated the smooth sensitivity mechanism into differentially private deep learning paradigm, which bounds the adding Gaussian noise. In this way, the resulting model can simultaneously provide with strong privacy protection and avoid accuracy degradation, providing a good trade-off between privacy and performance. The theoretic advantages of grouped gradient clipping are well analyzed. Extensive evaluations on popular benchmarks and comparisons with 11 state-of-the-arts clearly demonstrate the effectiveness and genearalizability of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1