Flyintel——一个基于大脑激发脉冲神经网络的机器人导航平台

Huang-Yu Yao, Hsuan-Pei Huang, Yu-Chi Huang, C. Lo
{"title":"Flyintel——一个基于大脑激发脉冲神经网络的机器人导航平台","authors":"Huang-Yu Yao, Hsuan-Pei Huang, Yu-Chi Huang, C. Lo","doi":"10.1109/AICAS.2019.8771614","DOIUrl":null,"url":null,"abstract":"Spiking neural networks (SNN) are regarded by many as the “third generation network” that will solve computation problems in a more biologically realistic way. In our project, we design a robotic platform controlled by a user-defined SNN in order to develop a next generation artificial intelligence robot with high flexibility. This paper describes the preliminary progress of the project. We first implement a basic simple decision network and the robot is able to perform a basic but vital foraging and risk-avoiding task. Next, we implement the neural network of the fruit fly central complex in order to endow the robot with spatial orientation memory, a crucial function underlying the ability of spatial navigation.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Flyintel – a Platform for Robot Navigation based on a Brain-Inspired Spiking Neural Network\",\"authors\":\"Huang-Yu Yao, Hsuan-Pei Huang, Yu-Chi Huang, C. Lo\",\"doi\":\"10.1109/AICAS.2019.8771614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking neural networks (SNN) are regarded by many as the “third generation network” that will solve computation problems in a more biologically realistic way. In our project, we design a robotic platform controlled by a user-defined SNN in order to develop a next generation artificial intelligence robot with high flexibility. This paper describes the preliminary progress of the project. We first implement a basic simple decision network and the robot is able to perform a basic but vital foraging and risk-avoiding task. Next, we implement the neural network of the fruit fly central complex in order to endow the robot with spatial orientation memory, a crucial function underlying the ability of spatial navigation.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

脉冲神经网络(SNN)被许多人认为是“第三代网络”,它将以一种更现实的生物学方式解决计算问题。在我们的项目中,我们设计了一个由用户自定义SNN控制的机器人平台,以开发具有高灵活性的下一代人工智能机器人。本文介绍了该项目的初步进展情况。我们首先实现了一个基本的简单决策网络,机器人能够执行基本但重要的觅食和风险规避任务。接下来,我们实现果蝇中心复合体的神经网络,以赋予机器人空间方向记忆,这是空间导航能力的关键功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flyintel – a Platform for Robot Navigation based on a Brain-Inspired Spiking Neural Network
Spiking neural networks (SNN) are regarded by many as the “third generation network” that will solve computation problems in a more biologically realistic way. In our project, we design a robotic platform controlled by a user-defined SNN in order to develop a next generation artificial intelligence robot with high flexibility. This paper describes the preliminary progress of the project. We first implement a basic simple decision network and the robot is able to perform a basic but vital foraging and risk-avoiding task. Next, we implement the neural network of the fruit fly central complex in order to endow the robot with spatial orientation memory, a crucial function underlying the ability of spatial navigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence of Things Wearable System for Cardiac Disease Detection Fast event-driven incremental learning of hand symbols Accelerating CNN-RNN Based Machine Health Monitoring on FPGA Neuromorphic networks on the SpiNNaker platform Complexity Reduction on HEVC Intra Mode Decision with modified LeNet-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1