J. Müller, G. Schuh, Dustin Meichsner, G. Gudergan
{"title":"在食品行业的中小型企业中实施商业分析的成功因素","authors":"J. Müller, G. Schuh, Dustin Meichsner, G. Gudergan","doi":"10.1109/ICTMOD49425.2020.9380609","DOIUrl":null,"url":null,"abstract":"In an increasingly changing market environment, the long-term survival of companies depends on their ability to reduce latencies in adapting to new market conditions. One strategy to meet this challenge is the anchoring of data-driven decision making, which leads to an increasing use of advanced information technologies and, subsequently, to an increase in the amount of data stored. The complexity of processing these data spurred the demand for advanced statistical methods and functions called Business Analytics. Companies are, despite all promised benefits, overwhelmed with the implementation of Business Analytics as indicated by a failure rate of 65 to 80 %. This paper provides an empirically validated, multi-dimensional model that takes an integrative look at critical success factors for the implementation of Business Analytics and based on which management recommendations can be generated. For this purpose, constructs of the model are conceptualized, before a structural equation model is developed. This model is then validated with data from 69 industrial partners in the food industry. It is shown amongst others, that the three success factors top management support, IT infrastructure and system quality are pivotal to increase the company performance.","PeriodicalId":158303,"journal":{"name":"2020 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD)","volume":"495 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Success factors for implementing Business Analytics in small and medium enterprises in the food industry\",\"authors\":\"J. Müller, G. Schuh, Dustin Meichsner, G. Gudergan\",\"doi\":\"10.1109/ICTMOD49425.2020.9380609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an increasingly changing market environment, the long-term survival of companies depends on their ability to reduce latencies in adapting to new market conditions. One strategy to meet this challenge is the anchoring of data-driven decision making, which leads to an increasing use of advanced information technologies and, subsequently, to an increase in the amount of data stored. The complexity of processing these data spurred the demand for advanced statistical methods and functions called Business Analytics. Companies are, despite all promised benefits, overwhelmed with the implementation of Business Analytics as indicated by a failure rate of 65 to 80 %. This paper provides an empirically validated, multi-dimensional model that takes an integrative look at critical success factors for the implementation of Business Analytics and based on which management recommendations can be generated. For this purpose, constructs of the model are conceptualized, before a structural equation model is developed. This model is then validated with data from 69 industrial partners in the food industry. It is shown amongst others, that the three success factors top management support, IT infrastructure and system quality are pivotal to increase the company performance.\",\"PeriodicalId\":158303,\"journal\":{\"name\":\"2020 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD)\",\"volume\":\"495 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTMOD49425.2020.9380609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTMOD49425.2020.9380609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Success factors for implementing Business Analytics in small and medium enterprises in the food industry
In an increasingly changing market environment, the long-term survival of companies depends on their ability to reduce latencies in adapting to new market conditions. One strategy to meet this challenge is the anchoring of data-driven decision making, which leads to an increasing use of advanced information technologies and, subsequently, to an increase in the amount of data stored. The complexity of processing these data spurred the demand for advanced statistical methods and functions called Business Analytics. Companies are, despite all promised benefits, overwhelmed with the implementation of Business Analytics as indicated by a failure rate of 65 to 80 %. This paper provides an empirically validated, multi-dimensional model that takes an integrative look at critical success factors for the implementation of Business Analytics and based on which management recommendations can be generated. For this purpose, constructs of the model are conceptualized, before a structural equation model is developed. This model is then validated with data from 69 industrial partners in the food industry. It is shown amongst others, that the three success factors top management support, IT infrastructure and system quality are pivotal to increase the company performance.