一种新的基于放大梯度函数的自适应学习算法

S. Ng, C. Cheung, S. Leung, A. Luk
{"title":"一种新的基于放大梯度函数的自适应学习算法","authors":"S. Ng, C. Cheung, S. Leung, A. Luk","doi":"10.1109/IJCNN.2001.939009","DOIUrl":null,"url":null,"abstract":"An algorithm is proposed to solve the \"flat spot\" problem in backpropagation networks by magnifying the gradient function. The idea of the learning algorithm is to vary the gradient of the activation function so as to magnify the backward propagated error signal gradient function especially when the output approaches a wrong value, thus the convergence rate can be accelerated and the flat spot problem can be eliminated. Simulation results show that, in terms of the convergence rate and global search capability, the new algorithm always outperforms the other traditional methods.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new adaptive learning algorithm using magnified gradient function\",\"authors\":\"S. Ng, C. Cheung, S. Leung, A. Luk\",\"doi\":\"10.1109/IJCNN.2001.939009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm is proposed to solve the \\\"flat spot\\\" problem in backpropagation networks by magnifying the gradient function. The idea of the learning algorithm is to vary the gradient of the activation function so as to magnify the backward propagated error signal gradient function especially when the output approaches a wrong value, thus the convergence rate can be accelerated and the flat spot problem can be eliminated. Simulation results show that, in terms of the convergence rate and global search capability, the new algorithm always outperforms the other traditional methods.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.939009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.939009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种通过放大梯度函数来解决反向传播网络中的“平坦点”问题的算法。该学习算法的思想是通过改变激活函数的梯度来放大后向传播的误差信号梯度函数,特别是当输出接近错误值时,从而加快收敛速度,消除平斑问题。仿真结果表明,在收敛速度和全局搜索能力方面,新算法始终优于其他传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new adaptive learning algorithm using magnified gradient function
An algorithm is proposed to solve the "flat spot" problem in backpropagation networks by magnifying the gradient function. The idea of the learning algorithm is to vary the gradient of the activation function so as to magnify the backward propagated error signal gradient function especially when the output approaches a wrong value, thus the convergence rate can be accelerated and the flat spot problem can be eliminated. Simulation results show that, in terms of the convergence rate and global search capability, the new algorithm always outperforms the other traditional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1