IMODEII:基于强化学习的改进IMODE算法

Karam M. Sallam, Mohamed Abdel-Basset, Mohammed El-Abd, A. W. Mohamed
{"title":"IMODEII:基于强化学习的改进IMODE算法","authors":"Karam M. Sallam, Mohamed Abdel-Basset, Mohammed El-Abd, A. W. Mohamed","doi":"10.1109/CEC55065.2022.9870420","DOIUrl":null,"url":null,"abstract":"The success of differential evolution algorithm depends on its offspring breeding strategy and the associated control parameters. Improved Multi-Operator Differential Evolution (IMODE) proved its efficiency and ranked first in the CEC2020 competition. In this paper, an improved IMODE, called IMODEII, is introduced. In IMODEII, Reinforcement Learning (RL), a computational methodology that simulates interaction-based learning, is used as an adaptive operator selection approach. RL is used to select the best-performing action among three of them in the optimization process to evolve a set of solution based on the population state and reward value. Different from IMODE, only two mutation strategies have been used in IMODEII. We tested the performance of the proposed IMODEII by considering 12 benchmark functions with 10 and 20 variables taken from CEC2022 competition on single objective bound constrained numerical optimisation. A comparison between the proposed IMODEII and the state-of-the-art algorithms is conducted, with the results demonstrating the efficiency of the proposed IMODEII.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"IMODEII: an Improved IMODE algorithm based on the Reinforcement Learning\",\"authors\":\"Karam M. Sallam, Mohamed Abdel-Basset, Mohammed El-Abd, A. W. Mohamed\",\"doi\":\"10.1109/CEC55065.2022.9870420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The success of differential evolution algorithm depends on its offspring breeding strategy and the associated control parameters. Improved Multi-Operator Differential Evolution (IMODE) proved its efficiency and ranked first in the CEC2020 competition. In this paper, an improved IMODE, called IMODEII, is introduced. In IMODEII, Reinforcement Learning (RL), a computational methodology that simulates interaction-based learning, is used as an adaptive operator selection approach. RL is used to select the best-performing action among three of them in the optimization process to evolve a set of solution based on the population state and reward value. Different from IMODE, only two mutation strategies have been used in IMODEII. We tested the performance of the proposed IMODEII by considering 12 benchmark functions with 10 and 20 variables taken from CEC2022 competition on single objective bound constrained numerical optimisation. A comparison between the proposed IMODEII and the state-of-the-art algorithms is conducted, with the results demonstrating the efficiency of the proposed IMODEII.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

差分进化算法的成功取决于其后代繁殖策略和相关的控制参数。改进的多算子差分进化(IMODE)证明了其效率,并在CEC2020竞赛中获得第一名。本文介绍了一种改进的IMODE,称为IMODEII。在IMODEII中,强化学习(RL)是一种模拟基于交互的学习的计算方法,被用作自适应算子选择方法。RL是在优化过程中,根据群体状态和奖励值,从三个行为中选择表现最好的行为,进化出一组解决方案。与IMODE不同的是,IMODEII只使用了两种突变策略。我们通过考虑从CEC2022竞赛中获得的10个和20个变量的12个基准函数来测试所提出的IMODEII的性能,这些函数用于单目标约束数值优化。将所提出的IMODEII算法与现有算法进行了比较,结果证明了所提出的IMODEII算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IMODEII: an Improved IMODE algorithm based on the Reinforcement Learning
The success of differential evolution algorithm depends on its offspring breeding strategy and the associated control parameters. Improved Multi-Operator Differential Evolution (IMODE) proved its efficiency and ranked first in the CEC2020 competition. In this paper, an improved IMODE, called IMODEII, is introduced. In IMODEII, Reinforcement Learning (RL), a computational methodology that simulates interaction-based learning, is used as an adaptive operator selection approach. RL is used to select the best-performing action among three of them in the optimization process to evolve a set of solution based on the population state and reward value. Different from IMODE, only two mutation strategies have been used in IMODEII. We tested the performance of the proposed IMODEII by considering 12 benchmark functions with 10 and 20 variables taken from CEC2022 competition on single objective bound constrained numerical optimisation. A comparison between the proposed IMODEII and the state-of-the-art algorithms is conducted, with the results demonstrating the efficiency of the proposed IMODEII.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1