{"title":"用于片上网络(NoC)架构的安全模型检查器","authors":"T. Boraten, D. DiTomaso, Avinash Karanth Kodi","doi":"10.1145/2902961.2903032","DOIUrl":null,"url":null,"abstract":"As chip multiprocessors (CMPs) are becoming more susceptible to process variation, crosstalk, and hard and soft errors, emerging threats from rogue employees in a compromised foundry are creating new vulnerabilities that could undermine the integrity of our chips with malicious alterations. As the Network-on-Chip (NoC) is a focal point of sensitive data transfer and critical device coordination, there is an urgent demand for secure and reliable communication. In this paper we propose Secure Model Checkers (SMCs), a real-time solution for control logic verification and functional correctness in the micro-architecture to detect Hardware Trojan (HT) induced denial-of-service attacks and improve reliability. In our evaluation, we show that SMCs provides significant security enhancements in real-time with only 1.5% power and 1.1% area overhead penalty in the micro-architecture.","PeriodicalId":407054,"journal":{"name":"2016 International Great Lakes Symposium on VLSI (GLSVLSI)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Secure model checkers for Network-on-Chip (NoC) architectures\",\"authors\":\"T. Boraten, D. DiTomaso, Avinash Karanth Kodi\",\"doi\":\"10.1145/2902961.2903032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As chip multiprocessors (CMPs) are becoming more susceptible to process variation, crosstalk, and hard and soft errors, emerging threats from rogue employees in a compromised foundry are creating new vulnerabilities that could undermine the integrity of our chips with malicious alterations. As the Network-on-Chip (NoC) is a focal point of sensitive data transfer and critical device coordination, there is an urgent demand for secure and reliable communication. In this paper we propose Secure Model Checkers (SMCs), a real-time solution for control logic verification and functional correctness in the micro-architecture to detect Hardware Trojan (HT) induced denial-of-service attacks and improve reliability. In our evaluation, we show that SMCs provides significant security enhancements in real-time with only 1.5% power and 1.1% area overhead penalty in the micro-architecture.\",\"PeriodicalId\":407054,\"journal\":{\"name\":\"2016 International Great Lakes Symposium on VLSI (GLSVLSI)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Great Lakes Symposium on VLSI (GLSVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2902961.2903032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Great Lakes Symposium on VLSI (GLSVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2902961.2903032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Secure model checkers for Network-on-Chip (NoC) architectures
As chip multiprocessors (CMPs) are becoming more susceptible to process variation, crosstalk, and hard and soft errors, emerging threats from rogue employees in a compromised foundry are creating new vulnerabilities that could undermine the integrity of our chips with malicious alterations. As the Network-on-Chip (NoC) is a focal point of sensitive data transfer and critical device coordination, there is an urgent demand for secure and reliable communication. In this paper we propose Secure Model Checkers (SMCs), a real-time solution for control logic verification and functional correctness in the micro-architecture to detect Hardware Trojan (HT) induced denial-of-service attacks and improve reliability. In our evaluation, we show that SMCs provides significant security enhancements in real-time with only 1.5% power and 1.1% area overhead penalty in the micro-architecture.